INTEGRATED REPORT OF ACTIVITIES

ON

FISHERMAN SURVEYS IN CAMBODIA'S MEKONG DELTA

By

TOUCH Bunthang, CHHENG Phen, THACH Phanara, TITH Puthearath,
MEAS Vichit, SEOUN Norng, and SAR Yuthy
Contents

1. Introduction 5
2. Methodologies 6
2.1 Study locations 6
2.2 Methodology 6
3. Result of the study 7
3.1 General Information of the respondents 7
3.2 Fishing gear use and fishing boat possessions 8
3.3 Top 10 species caught in last 12 months: For mainstream site; tributary habitats site; flooded forest site, flooded rice field site , O Roeung Ouv; and flooded rice field site, Choeung Prey 12
3.4 Other Aquatic Animals (OAAs) caught in Last 12 months 19
3.5 Fish species most recent catch 22
3.6 Disposal of catch caught in last 12 months in dry and wet seasons 29
3.7 Fisheries trend compared to last 5 years in term of abundance biomass and fish length 30
3.8 Species are no longer caught 37
3.9 Species are rare in Catch 43
3.10 New Species are now caught 51
3.11 Raise fish by aquaculture 55
4. Summary of Study Results 56
5. Annex questionnaire 59

List of Tables

Table 1 Res pondent characteristics by age, household member and fishing experiences 7
Table 2 Percentage distribution of respondents by fishing activities 7
Table 3 Percentage distribution of respondents by occupations. 7
Table 4 Percentage distribution of respondents by fishing gear use 8
Table 5 Percentage distribution of respondents by fishing boat possessions 8
Table 6 Percentage distribution of respondents by fishing gear use and fishing boat possessions at mmainsteam site 9
Table 7 Percentage distribution of respondents by fishing gear use and fishing boat possessions at tributary 9
Table 8 Percentage distribution of respondents by fishing gear use and fishing boat possessions at flooded forest 10
Table 9 Percentage distribution of respondents by fishing gear use and fishing boat possessions at Flooded rice field, O Roeung Ouv 10
Table 10 Percentage distribution of respondents by fishing gear use and fishing boat possessions at Flooded rice field, Choeung Prey. 11
Table 11 The fish species caught in last 12 months for all sites and all sample fishers (respondents) 12
Table 12 The fish species caught in last 12 months in mainstream, Muk Kampul, Kandal Province 13
Table 13 The fish species caught in last 12 months in tributary habitats site, Peam Ro, Prey Veng province 15
Table 14 The fish species caught in last 12 months in flooded forest, Tboung Kmum 16
Table 15 The fish species caught in last 12 months in flooded rice field, O Roeung Ouv, Tboung Kmum province 17
Table 16 The fish species caught in last 12 months in flooded rice field, Chhoeung Prey, Kampong Chham province 18
Table 17 Frogs caught in last 12 months by all fishers 19
Table 18 Frogs caught in last 12 months by sites 19
Table 19 Shrimps caught in last 12 months by all fishers 19
Table 20 Shrimps caught in last 12 months by sites 20
Table 21 Crabs caught in last 12 months by all fishers. 20
Table 22 Crabs caught in last 12 months by sites 20
Table 23 Snakes caught in last 12 months by all fishers. 21
Table 24 Sankes caught in last 12 months by sites 21
Table 25 Fish species most recent catch by all sites and all sample fishers 22
Table 26 Fish species most recent catch in mainstream, Muk Kampul, Kandal Province 24
Table 27 Fish species most recent catch in tributary habitats site, Peam Ro, Prey Veng province 25
Table 28 Fish species most recent catch in flooded forest, Tboung Kmum 26
Table 29 Fish species most recent catch in flooded rice field, O Roeung Ouv, Tboung Kmum province .27Table 30 Fish species most recent catch in flooded rice field, Chhoeung Prey, Kampong Chham province28
Table 31 The disposal of catch caught in last 12 months by consumed, sold, processing, given to relative 29
Table 32 Fisheries trend in last 5 year in term of abundance biomass 30
Table 33 Reasons for changes in term of abundance biomass by sample fishers 30
Table 34 Reasons for change in term of abundance biomass by sites 31
Table 35 Fisheries trend in last 5 year in term of fish length. 33
Table 36 Reasons for change in term of fish length by all fishers 34
Table 37 Reasons for change in term of fish length by sites 35
Table 38 Fish species are no longer caught by all sites and all sample fishers 37
Table 39 Fish species are no longer caught in mainstream site, Muk Kampul, Kandal Province 38
Table 40 Fish species are no longer caught in tributary habitats site, Peam Ro, Prey Veng province 39
Table 41 Fish species are no longer caught in flooded forest, Tboung Kmum. 39
Table 42 Fish species are no longer caught in flooded rice field, O Roeung Ouv, Tboung Kmum province40
Table 43 Fish species are no longer caught in flooded rice field, Chhoeung Prey, Kampong Chham province 40
Table 44 Reasons for no longer caught in term of illegal fishing activities, too many people participating in fishing, dam/dyke development, and others by all fishers 41
Table 45 Reasons for no longer caught in term of illegal fishing activities by sites 42
Table 46 Reasons for no longer caught in term of too many people participating in fishing by sites 42
Table 47 Reasons for no longer caught in term of dam/dyke development fishers by sites 43
Table 48 Reasons for no longer caught in term of other factors by sites 43
Table 49 Fish species are rare in catches by all sites and all sample fishers 44
Table 50 Fish species are rare in catches in mainstream, Muk Kampul, Kandal Province 45
Table 51 Fish species are rare in catches in tributary habitats site, Peam Ro, Prey Veng province 46
Table 52 Fish species are rare in catches in flooded forest, Tboung Kmum 47
Table 53 Fish species are rare in catches in flooded rice field, O Roeung Ouv, Tboung Kmum province47
Table 54 Fish species are rare in catches in flooded rice field, Chhoeung Prey, Kampong Chham province48
Table 55 Reasons for rare in catches in term of illegal fishing gears, too many people participating in fishing, dam/dyke development, and others by all fishers 49
Table 56 Reasons for rare in catches in term of illegal fishing gears by sites 49
Table 57 Reasons for rare in catches in term of too many people participating in fishing by sites 49
Table 58 Reasons for rare in catches in term of dam/dyke development by sites 50
Table 59 Reasons for rare in catches in term of other factors by sites 50
Table 60 New fish species are recently caught by all sites and all sample fisheries 51
Table 61 New fish species are recently caught in mainstream, Muk Kampul, Kandal Province 52
Table 62 New fish species are recently caught in flooded forest, Tboung Kmum 53
Table 63 New fish species are recently caught in flooded rice field, O Roeung Ouv, Tboung Kmum province 53
Table 64 New fish species are recently caught in flooded rice field, Chhoeung Prey, Kampong Chham province 53
Table 65 New fish species caught in term of introduction and escape to the wild, and habitat/food preferences, and availability by all fishers 54
Table 66 New fish species caught in term of introduction and escape to the wild; and habitat/food preferences, and availability by sites 54
Table 67 Raising aquaculture by all fishers 55
Table 68 Raising aquaculture by sites 55

1. Introduction

Eleven hydroelectric projects have been identified and proposed along mainstream Mekong River from Chiang Saen to Sambor. Construction and operation of any or all of these proposed projects could potentially have substantial and wide-ranging socio-economic and environmental effects in all four riparian countries in the Lower Mekong Basin. Recently, several important research studies have been proposed and conducted across the whole basin, with high expectation to understand the possible positive and negative impacts of those proposed damming in order to optimize the Mekong basin development. Four outstanding studies are ranging here: 1) The Council Study conducts by Mekong River Commission Secretariat aiming to understand the impacts of 6 thematic area - Irrigation, Agriculture and land use change, Domestic and industrial water use, Flood protection structures and floodplain infrastructure, Hydropower development, and Transportation on Social, Economic and Environment of the whole basin. 2) The Delta study initiated by Vietnamese Government to assess the impact of Basin Development, in particular mainstream hydroelectric development on the Mekong delta. 3) Study on fish migration across the Khone Falls at the Lao PDR-Cambodia border conducts by Inland Fisheries Research and Development Institute (IFReDI) of Fisheries Administration, Cambodia to define spawning habitat of migratory fish species through analysis age of Larvae Vis-à-Vis water flow velocity. 4) Fish Migration at Khone Falls conducts by World Fish to document how fishes pass the falls.

This report is presented the result of a specific research activity 3 "Fisherman surveys in Cambodia's Mekong Delta Surveys in Cambodia's Mekong Delta" under one of six components within the framework of the Delta study. The specific objective of this activity is to understand the distribution and diversity of fishing gears in the Delta and floodplain area to relate to the catch assessment of individual fishers in communities.

2. Methodologies

2.1 Study locations

Scope of the study was Cambodia's Mekong Delta covering 6 provinces - Kampong Cham (which is dividing to two provinces, Kampong Cham and Thbaung Khmom), Kandal, Preveng, Svay Reang, Part of Kampong Speu and a part of Takeo. In total, five sites across the whole basin presumably representative habitats were selected for the study. 1) Tonle Bit was the representative of flooded forest habitat, located at Tuol Vihear village, Chirou Pir commune, Tbuong Khmom district, Tboung Khmom province, 2) Ou Reang Ov was a representative of flooded rice field habitat, located at Kampong Boeng Cheung village, Mien commune, Ou Reang Ov district, and Tboung Khmom province, 3) Cheung Prey was a representative of flooded rice field habitat, located at Boeng Chrouy village, Soutip commune, Cheung Prey district, Kampong Cham province, 4) Muk Kampul was the Mekong mainstream habitat. Located at Chrouy Metrey Ler village, Reussey Chrouy commune, Muk Kampul district, Kandal province, and 5) Peam Ro was the Mekong tributary located at Peam Ro village, Peam Ro commune, Peam Ro district, Prey Veng province.

2.2 Methodology

The total representative sample survey of 175 individuals were randomly selected within the 5 study sites of which 35 individuals were selected in each study site. The survey objective aimed to understand the current status of both wild fisheries and aquaculture including other aquatic animals; and the information on type of common uses fishing gears in each habitat and season were also explored (annex questionnaires).

3. Result of the study

3.1 General Information of the respondents

Table 1 Res pondent characteristics by age, household member and fishing experiences

Characteristics	n	Minimum	Maximum	Mean	Std. Deviation
Fisher's age	175	17	68	42.41	11.718
Fisher household dependents	174	2	12	5.43	1.900
Fishing experiences (year)	174	2	50	17.63	11.313

The average age of respondents was 42.4 years old. Regarding to fisher household member, an average was 5.4 persons/household. The average fishing experience of respondents was 17.6 years (table 1).

Table 2 Percentage distribution of respondents by fishing activities.

Fishing Activities	Frequency	Percent (\%)
Full-time fishing	89	50.6
Part-time fishing	86	48.9

More than half (50.6%) of the respondents generated their income from full-time fishing activities, while nearly 49% was as part-time fihers (Table 2)

Table 3 Percentage distribution of respondents by occupations.

Respondent's Occupations	Frequency	Percent (\%)
No job except fishing	53	30.1
Agricultural farmer (rice, fruit, vegetable)	80	45.5
Aquaculture	1	.6
Labor	16	9.1
Motorbike Taxi	10	5.7
Trading/business	1	.6
Fish processing	4	2.3
Other occupations (Animal husbandry, Palm juice exploiter, Horse cart driver, House constructor, Fishing gear maker, Classic musician, and Chef)	10	5.7

More than forty five percent (45.5%) of the respondents derived income from agriculture, followed by fishing and labor force, which accounted for about 30.1% and 9.1%, respectively. Up to around 5.7%
generated income from other 8 different job items such as animal husbandry, palm juice exploiter, horse cart driver, House constructor, fishing gear maker, classic musician, and Chef (Table 2).

3.2 Fishing gear use and fishing boat possessions

1.1 Fishing gaer use and fishing boat by all respondents

Table 4 Percentage distribution of respondents by fishing gear use

Fishing Gears	Frequency	Percentage (\%)
Stationary Gillnet	161	92.00
Hook Long Line	43	24.57
Vertical Cyclinder Trap	15	8.57
Cast Net	14	8.00
Drift gillnet	12	6.86
Lob-Luk	12	6.86
Single Hook Set Pole	8	4.57
Veil	8	4.57
Big Bamboo Vertical	5	2.86
Griff Gillnet	5	2.86
Mainh	4	2.29
Vertical Cyclinder T	4	2.29
Giant Lift Net	3	1.71
Stationary Gillnet	3	1.71
Encircling Seine Net	2	1.14
Giant Cast Net	2	1.14
Viel	2	1.14
Boat drege clam	1	0.57
Hook Long Line	1	0.57
Horizontal Cylinder	1	0.57
Samras	1	0.57

Up to 92% of respondents used stationary gillnet as their fishing mean. Followed by hook long line was about one-fourth (24.6\%) (Table 4).

Table 5 Percentage distribution of respondents by fishing boat possessions.

Fishing boat possessions	Frequency	Percentage
Fishers with fishing boat	170	97.143
Fishers without fishing boat	5	2.857
Boat with engine	135	79.41
Boat without engine	35	20.59

Almost all respondents (97.1\%) has fishing boat and only 2.8% of fisher has no fishing boat, of which nearly 80% of boats with engine and 20.6% of boat without engine.
2.2. Fishing gaer use and fishfing boat possessions of respondents by sites

Table 6 Percentage distribution of respondents by fishing gear use and fishing boat possessions at mmainsteam site

Sites	Characteristics	Frequency	Percentage
	Fishing gear use		
	Stationary Gillnet	4	11.43
	Drift gillnet	4	11.43
	Mainh	2	5.71
	Giant Cast Net	1	2.86
	Cast Net		
	Fishing boat possession	35	100.00
Mainsteam, Muk Kampul	Fishers with fishing boat	32	91.43
	Boat with Engine	3	8.57
	Boat without Engine		

For mainstream site in Muk Kampul, Kandal province, up to 111.4% of respondents used stationary gillnet as their fishing gear. Followed by drift gillnet and Mainh were the same percentage accouting for 11.4% and 11.4%, respectively. All respondents had fishing boats, of which more that 90% of boats with engine and about 9% without engine (Table 6).

Table 7 Percentage distribution of respondents by fishing gear use and fishing boat possessions at tributary.

Sites	Characteristics	Frequency	Percentage
	Fishing gear use		71.43
	Stationary Gillnet	12	34.29
	Lob-Luk	11	31.43
	Cast Net	8	22.86
	Drift gillnet	5	14.29
	Griff Gillnet	5	14.29
	Vertical Cyclinder Trap	2	5.71
	Hook Long Line	2	5.71
	Stationary Gillnet	2	5.71
	Viel	1	2.86
	Samras	1	2.86
	Vertical Cyclinder T	35	100.00
	Fishing boat possessions	88.57	
	Fishers with fishing boat	11.43	

For tributary site in Peam Ro, Prey Veng province, respondents used stationary gillnet was 71.4% as their fishing gears. Lob Luk and Cast Net were the second and third fishing gears used by fisheres, accounting for 34.3% and 31.4%, respectively. All respondents had fishing boats, of which more that 88.5% of boats with engine and about 11.4% without engine (Table 7).

Table 8 Percentage distribution of respondents by fishing gear use and fishing boat possessions at flooded forest

Sites	Characteristics	Frequency	Percentage
	Fishing gear use		
	Stationary Gillnet	34	97.14
	Hook Long Line	21	60.00
	Vertical Cyclinder Trap	4	11.43
	Giant Lift Net	3	8.57
	Veil	3	8.57
	Cast Net	2	5.71
	Boat drege clam	1	2.86
	Fishing boat possessions		97.14
	Fishers with fishing boat	34	2.86
	Fishers without fishing boat	1	52.94
	Boat with Engine	18	16.06
	Boat without Engine		

For flooded forest site in Tboung Kmum, Tboung Khmom province, up to 97.1% respondents fished stationary gillnet as their fishing gears. Hook Long Line and Vertical Cyclineder Trap were the second and third using as their fishing means, accounting for 60% and 11.4%, respectively. More than 97% of respondents had fishing boats, of which about 53% of boats with engine and about 47% without engine (Table 8).

Table 9 Percentage distribution of respondents by fishing gear use and fishing boat possessions at Flooded rice field, O Roeung Ouv.

Sites	Characteristics	Frequency	Percentage
	Fishing gear use		
	Stationary Gillnet	35	100.00
	Hook Long Line	10	28.57
	Vertical Cyclinder Trap	5	14.29
	Encircling Seine Net	1	2.86
	Veil	1	2.86
	Fishing boat possessions		
	Fishers with fishing boat	33	94.29
	Fishers without fishing boat	2	5.714
	Boat with Engine	24	72.73
	Boat without Engine	9	27.27

For Flooded rice field in Ou Roeung Ov, Tboung Khmom province, all respondents used stationary gillnet as their fishing gears. Hook Long Line and Vertical Cyclineder Trap were the second and third using as their fishing means, accounting for 28.5% and 14.3%, respectively. More than 94% of respondents had fishing boats, of which about 72.7% of boats with engine and about 27.3% without engine (Table 9).

Table 10. Percentage distribution of respondents by fishing gear use and fishing boat possessions at Flooded rice field, Choeung Prey.

Sites	Characteristics	Frequency	Percentage
	Fishing gear use		
Flooded rice field, Choeung Prey	Stationary Gillnet	28	80.00
	Hook Long Line	10	28.57
	Single Hook Set Pole	8	22.86
	Big Bamboo Vertical	5	14.29
	Veil	4	11.43
	Vertical Cyclinder T	3	8.57
	Encircling Seine Net	1	2.86
	Hook Long Line	1	2.86
	Horizontal Cylinder	1	2.86
	Stationary Gillnet	1	2.86
	Vertical Cyclinder Trap	1	2.86
Flooded rice field, Choeung Prey	Fishing boat possessions		
	Fishers with fishing boat	33	94.29
	Fishers without fishing boat	2	5.714
	Boat with Engine	30	90.91
	Boat without Engine	3	9.09

For Flooded rice field, Choeung Prey, Kampong Chham province, 80% of respondents used stationary gillnet as their fishing gears. Hook Long Line and Single Hook Set Pole were the second and third using as their fishing means, accounting for 28.5% and 22.8%, respectively. More than 94% of respondents had fishing boats, of which about 91% of boats with engine and about 9% without engine (Table 10).

3．3 Top 10 species caught in last 12 months：For mainstream site；tributary habitats site； flooded forest site，flooded rice field site，O Roeung Ouv；and flooded rice field site， Choeung Prey．
Table 11．The fish species caught in last 12 months for all sites and all individuals

No．	Khmer Name	Scientific Name	Average per fisher／year （kg）	Percentage
1		Gymnosstomus sp．	666.46	8.22
2		Labiobarbus siamensis	382.77	4.72
3		Channa striata	314.50	3.88
4		Puntioplites proctozysron	304.87	3.76
5	¢ี¢	Cirrhinus microlepsis	288.83	3.56
6		Parachela ouygastoides	278.67	3.44
7		Puntius rhombeus	247.00	3.05
8	เี้\％	Hampala sp．	242.38	2.99
9	［ี𠃊	Oryzias sp．	230.33	2.84
10	เี่ถู	Notopterus notopterus	228.97	2.82
11		Osteochilus sp．	210.89	2.60
12		Akysis sp．	203.79	2.51
13	｜ธีّ4	Panagasius krempfi	200.33	2.47
14		Labeo Chrysophekadion	182.45	2.25
15	เี้ที่บู	Thynnichthys Thynnoides	171.53	2.11
16		Cosmochilus harmandi	171.40	2.11
17		Belodontichthys truncatus	159.16	1.96
18	เทีセกn	Chyclocheilichthys enoplos	157.47	1.94
19		paralaubuca barroni	157.28	1.94
20	$\square^{\text {¢ }}$	Pangasius larnaudii	154.82	1.91
21	（ี้เกก	Kryptoplerus sp．	153.86	1.90
22	เี๋กญกส	Osteochilus schlegeli	147.50	1.82
23		Osteochilas melanpleura	143.16	1.77
24		Wallago attu	142.80	1.76
25	ゼที่	Hypsitarbus sp．	142.16	1.75
26		Pangasius mekongensis	139.46	1.72
27		Pristolepis fasciata	136.21	1.68
28		Catlocarpio siamensis	129.67	1.60
29	｜itumem	Cyclocheilichthys sp．	128.36	1.58
30	¢1\％	Pangasius sp．	125.14	1.54
31	เี่ํํ	Hemibagrus sp．	125.10	1.54
32		Clupeichthys sp．	122.50	1.51
33	10in	Pangasius conchophilus	118.65	1.46
34		Trichohodus sp．	117.27	1.45

35		Probarbus sp.	105.00	1.29
36	เีบบทา	Boesemania microlepis	90.56	1.12
37	คึํา	Babichthys laevis	90.00	1.11
38	เี่อก่	Anabas testudineus	87.55	1.08
39	โี่งกักด	Amblyceps sp.	87.50	1.08
40	เึ\|ํา	Chitala ornate	75.00	0.92
41		Cynoglossus sp.	73.77	0.91
42		Oreochromis sp.	71.50	0.88
43	โี่ม	Macrognathus sp.	71.38	0.88
44	¢ี่าึiun	Barbonymus sp.	71.29	0.88
45		Labiobarbus leptocheila	67.04	0.83
46	(1)	Rasbora sp.	65.34	0.81
47	1 10\% $^{\text {¢ }}$	Oxyeleotris	52.50	0.65
48		Yasuhikotakia sp.	50.25	0.62
49		Ompok eugeneiatus	48.75	0.60
50	คี่	Lycothrissa crocodilus	45.00	0.55
51	(1\|\%	Cirrhinus microlepis	31.25	0.39
52		Bagrichthys obscurus	30.25	0.37
53	¢ี¢	Xenentodon cancila	17.50	0.22
54		Pangasius polyuranodom	16.50	0.20
55	โี่งโุมู่	Coilia lindmani	12.00	0.15
56		Mastacembelus armatus	10.00	0.12
57		Amblyrhynchichthys micracanthus	8.00	0.10
58		Polynemus sp.	7.00	0.09

The average fish catch per fisher/ year of the top 10 fish species caught in last 12 months for individuals: 1. Gymnosstomus sp. was $666.5 \mathrm{~kg} /$ year (8.2%), 2. Labiobarbus siamensis was $382.5 \mathrm{~kg} /$ year (4.72%), 3 . Channa striata was $314.5 \mathrm{~kg} / \mathrm{year}(3.9 \%)$, 4. Puntioplites proctozysron was $304.87 \mathrm{~kg} / \mathrm{year}$ (3.8%), 5 . Cirrhinus microlepsis was $288.83 \mathrm{~kg} /$ year (3.6%), 6 . Parachela ouygastoides was $278.67 \mathrm{~kg} /$ year (3.4%), 7. Puntius rhombeus was $247.00 \mathrm{~kg} /$ year (3.05%), 8 . Hampala sp was $242.38 \mathrm{~kg} / \mathrm{year}(2.99 \%), 9$. Oryzias sp was $230.33 \mathrm{~kg} /$ year (2.84%), and 10 . Notopterus notopterus was $228.97 \mathrm{~kg} /$ year (2.82%) (Table 11).

Table 12. The fish species caught in last 12 months in mainstream, Muk Kampul, Kandal Province

No.	Khmer Name	Scietific Name	Average caught per fisher/year (kg)	Percentage
1	เี่ใด	Gymnosstomus sp.	1317.27	18.86
2		Labiobarbus siamensis	642.00	9.19
3	\|175	Oryzias sp.	500.00	7.16
4	¢゙¢	Puntioplites proctozysron	437.50	6.26
5		Cirrhinus microlepsis	407.67	5.84
6	เที่บ	Osteochilus sp.	360.00	5.16

7		Panagasius krempfi	298.33	4.27
8		paralaubuca barroni	266.63	3.82
9	โี๋ิทบ	Thynnichthys Thynnoides	191.25	2.74
10	เี่ถูก	Pangasius mekongensis	184.40	2.64
11	เีทกก	Kryptoplerus sp．	166.78	2.39
12	（1） inn $^{\text {m }}$	Labeo Chrysophekadion	161.93	2.32
13	คืําก	Chyclocheilichthys enoplos	161.38	2.31
14	［7\％	Pangasius larnaudii	159.79	2.29
15	10i\％	Pangasius conchophilus	148.17	2.12
16		Labiobarbus leptocheila	142.00	2.03
17	｜ัT｜	Pangasius sp．	138.02	1.98
18	Tที่	Osteochilas melanpleura	134.68	1.93
19		Babichthys laevis	120.00	1.72
20	เี่บที่า	Boesemania microlepis	119.78	1.72
21	อีํา	Hemibagrus sp．	109.36	1.57
22	ธี｜	Probarbus sp．	105.00	1.50
23	¢゙T\％	Hypsitarbus sp．	102.70	1.47
24		Belodontichthys truncatus	79.70	1.14
25		Wallago attu	75.33	1.08
26		Cosmochilus harmandi	65.00	0.93
27	｜ี่ํํ	Rasbora sp．	60.00	0.86
28	ช゙¢	Channa striata	60.00	0.86
29	｜ธีะ	Oreochromis sp．	45.00	0.64
30	109	Lycothrissa crocodilus	45.00	0.64
31	｜itumg	Bagrichthys obscurus	38.00	0.54
32		Cynoglossus sp．	36.75	0.53
33	ธี่าับก	Barbonymus sp．	34.50	0.49
34	1\％\％ำ\％	Akysis sp．	22.00	0.32
35		Pangasius polyuranodom	16.50	0.24
36		Coilia lindmani	12.00	0.17
37	¢゙¢TM	Yasuhikotakia sp．	11.00	0.16
38		Amblyrhynchichthys micracanthus	8.00	0.11

The average fish catch per fisher／year of the top 10 fish species caught in last 12 months in mainstream site，Muk Kampul，Kandal Province：1．Gymnosstomus sp．was $666.5 \mathrm{~kg} /$ year（ 8.2% ），2．Labiobarbus siamensis was 382.5%（ 4.72% ），3．Channa striata was 314.5%（ 3.9% ），4．Puntioplites proctozysron was $437.50 \mathrm{~kg} /$ year（ 6.26% ）， 5 ．Cirrhinus microlepsis was $407.67 \mathrm{~kg} / \mathrm{year}(5.84 \%), 6$ ．Osteochilus sp．Was $360 \mathrm{~kg} /$ year（ 5.16 \％），7．Panagasius krempfi was $298.33 \mathrm{~kg} /$ year（ 4.27% ），8．paralaubuca barroni was $266.63 \mathrm{~kg} /$ year（ 3.82% ）， 9 ．Thynnichthys Thynnoides was $191.25 \mathrm{~kg} /$ year（ 2.74% ），and 10．Pangasius mekongensis was $184.40 \mathrm{~kg} /$ year（ 2.64 \％）（Table 12）．

Table 13．The fish species caught in last 12 months in tributary habitats site，Peam Ro，Prey Veng province

No．	Khmer Name	Scientific Name	Average caught per fisher／year（kg）	Percentage
1		Cirrhinus microlepsis	300.00	6.496096
2	โี่กูต	Notopterus notopterus	300.00	6.496096
3		Channa striata	255.57	5.534055
4	โค์่ยู	Gymnosstomus sp．	239.13	5.17811
5	何ษักน	Puntioplites proctozysron	232.37	5.031632
6	¢ี่ทุก	Labeo Chrysophekadion	230.55	4.992151
7	¢ี่\％ู	Hampala sp．	220.80	4.781126
8		Cosmochilus harmandi	198.00	4.287423
9	โี゙กำแแแ	Belodontichthys truncatus	190.56	4.126224
10	โี่ยิท	Thynnichthys Thynnoides	178.44	3.863823
11		Osteochilas melanpleura	170.00	3.681121
12	โุี่งณลก	Amblyceps sp．	152.50	3.302182
13	¢7¢	Hypsitarbus sp．	137.34	2.973913
14	เฺ｜ํา	Pangasius sp．	123.00	2.663399
15	โุ์เ\％	Pangasius larnaudii	112.50	2.436036
16	โฺีทตตุ	Akysis sp．	110.56	2.394082
17	ศุี่เก่	Kryptoplerus sp．	108.00	2.338594
18	โฺีกโุด่	Pristolepis fasciata	103.13	2.233033
19	โี่กำด	Hemibagrus sp．	102.82	2.226356
20	โุึษ｜	Panagasius krempfi	102.33	2.21589
21	เีึกุก	Osteochilus sp．	92.00	1.992136
22		Parachela ouygastoides	91.00	1.970482
23	โฺ์โึ่บ่	Anabas testudineus	86.58	1.874845
24		Cynoglossus sp．	85.16	1.844058
25		paralaubuca barroni	76.00	1.645678
26		Cyclocheilichthys sp．	68.29	1.478635
27	［ที่บทำ	Rasbora sp．	66.11	1.431461
28	โฺีญููก	Pangasius mekongensis	63.73	1.379928
29	¢ี่บยา	Boesemania microlepis	57.69	1.249145
30		Clupeichthys sp．	57.00	1.234258
31	［คี่ก	Pangasius conchophilus	52.25	1.131403
32	เที่กก่กต	Trichohodus sp．	41.00	0.8878
33	¢¢゙ูู	Macrognathus sp．	38.33	0.830057
34		Cirrhinus microlepis	34.00	0.736224
35		Oreochromis sp．	31.33	0.678481
36	โี่บ枵	Oryzias sp．	31.00	0.671263
37		Labiobarbus leptocheila	17.60	0.381104

38	\|itak	Xenentodon cancila	17.50	0.378939
39	tibit $^{\text {\% }}$	Oxyeleotris	15.00	0.324805
40	คึ\|ำ\%	Ompok eugeneiatus	15.00	0.324805
41		Bagrichthys obscurus	7.00	0.151576
42	${ }^{\text {fin }}$	Polynemus sp.	7.00	0.151576

The average fish catch per fisher/ year of the top 10 fish species which were cought during last 12 months tributary habitats site at Peam Ro, Prey Veng province 1 . Cirrhinus microlepsis $300 \mathrm{~kg} / \mathrm{year}(6.5 \%), 1$. Notopterus notopterus $300 \mathrm{~kg} /$ year (6.5%), 3. Channa striata $255.57 \mathrm{~kg} / \mathrm{year}(5.53 \%)$, 4. Gymnosstomus sp. $239.13 \mathrm{~kg} /$ year (5.18%), 5 . Puntioplites proctozysron $232.37 \mathrm{~kg} /$ year (5.03%), 6 . Labeo Chrysophekadion $230.55 \mathrm{~kg} /$ year (4.99 \%), 7. Hampala sp. $220.80 \mathrm{~kg} /$ year (4.78 \%), 8. Cosmochilus harmandi $198.00 \mathrm{~kg} /$ year (4.29%), 9 . Belodontichthys truncates $190.56 \mathrm{~kg} / \mathrm{year}(4.13 \%)$, and 10 . Thynnichthys Thynnoides $178.44 \mathrm{~kg} /$ year (3.86 \%) (Table 13).

Table 14. The fish species caught in last 12 months in flooded forest, Tboung Khmom

No.	Khmer Name	Scientific Name	Average caught per fisher/ year (kg)	Percentage
1		Clupeichthys sp.	450.00	7.87
2		Parachela ouygastoides	341.67	5.98
3		Channa striata	329.39	5.76
4	เค\%	Hampala sp.	278.33	4.87
5	(ivivnmm	Cyclocheilichthys sp.	272.67	4.77
6		Puntius rhombeus	247.00	4.32
7	เึ๋y	Gymnosstomus sp.	225.31	3.94
8		Labeo Chrysophekadion	195.00	3.41
9		Belodontichthys truncatus	187.50	3.28
10		Akysis sp.	184.11	3.22
11	เีฺ๋ก	Notopterus notopterus	183.44	3.21
12		Labiobarbus siamensis	183.07	3.20
13	ช゙¢	Puntioplites proctozysron	177.65	3.11
14	ฺี¢	Osteochilus sp.	171.17	2.99
15	คึเท	Kryptoplerus sp.	170.00	2.97
16	เีตก	Hemibagrus sp.	169.73	2.97
17	\|10ํx	Oryzias sp.	160.00	2.80
18	เึ่ญหกค	Osteochilus schlegeli	147.50	2.58
19	1 ix $^{\text {mix }}$	Barbonymus sp.	146.50	2.56
20	โี๋ิท్ర	Thynnichthys Thynnoides	146.11	2.56
21		Hypsitarbus sp.	138.09	2.41
22	ชีกัญ以	Trichohodus sp.	133.50	2.33

23		Cirrhinus microlepsis	120.00	2.10
24		Wallago attu	116.67	2.04
25	\|ี่ถูก	Chyclocheilichthys enoplos	116.35	2.03
26		Pristolepis fasciata	96.91	1.69
27	¢TM	Chitala ornate	75.00	1.31
28	[ี่	Oxyeleotris	65.00	1.14
29		Yasuhikotakia sp.	63.33	1.11
30	\|1¢ ¢ ¢	Ompok eugeneiatus	60.00	1.05
31	¢ึh	Babichthys laevis	60.00	1.05
32	ธี่ใญ	Anabas testudineus	58.75	1.03
33	\|itu	Pangasius sp.	55.20	0.97
34		paralaubuca barroni	49.20	0.86
35		Macrognathus sp.	48.50	0.85
36		Cirrhinus microlepis	28.50	0.50
37	ธึ®ఝ\%	Pangasius mekongensis	26.00	0.45
38		Labiobarbus leptocheila	16.00	0.28
39		Amblyceps sp.	15.00	0.26
40	${ }^{\text {Fig }}$	Mastacembelus armatus	10.00	0.17

The everage fish catch per fisher/ year of the top 10 fish species which were cought during last 12 months in flooded forest at Tboung Khmom, Tboung Khmom province: 1 . Clupeichthys sp. was $450 \mathrm{~kg} / \mathrm{year}$ (7.87 \%), 2. Parachela ouygastoides was $341.67 \mathrm{~kg} /$ year (5.98%), 3. Channa striata was $329.39 \mathrm{~kg} / \mathrm{year}$ (5.76%), 4. Hampala sp. was $278.33 \mathrm{~kg} /$ year (4.87%), 5 . Cyclocheilichthys sp. was $272.67 \mathrm{~kg} /$ year (4.77 \%), 6. Puntius rhombeus was $247 \mathrm{~kg} /$ year (4.32%), 7 . Gymnosstomus sp. was $225.31 \mathrm{~kg} / \mathrm{year}$ (3.94%), 8. Labeo Chrysophekadion was $195.00 \mathrm{~kg} /$ year (3.41%), 9. Belodontichthys truncates was 187.50 $\mathrm{kg} /$ year (3.28%), and 10. Akysis sp. was $184.11 \mathrm{~kg} /$ year (3.22%) (Table 14).

Table 15. The fish species caught in last 12 months in flooded rice field, Ou Reung Ov , Tboung Khmom province

No.	Khmer Name	Scientific name	Average caught per year (kg)	Percentage	
1	เีツฺู	Pangasius mekongensis	750.00	15.42	
2	ธ์ําญ	Gymnosstomus sp.	497.11	10.22	
3		Labiobarbus siamensis	448.86	9.23	
4	10nต \%	Akysis sp.	385.13	7.92	
5	ใุดท	Channa striata	286.67	5.89	
6	\|ี	uT\%	Puntioplites proctozysron	273.11	5.62
7		Wallago attu	248.75	5.11	
8		Belodontichthys truncatus	240.00	4.93	

9	เี๋ก	Hemibagrus sp.	201.00	4.13
10	เึ์ท	Osteochilus sp.	200.00	4.11
11	[゙ที่	Hypsitarbus sp.	196.00	4.03
12	เีทหก	Kryptoplerus sp.	162.50	3.34
13		Oreochromis sp.	145.00	2.98
14	คีกกญ	Trichohodus sp.	134.43	2.76
15	เี่เต่	Anabas testudineus	105.78	2.17
16		Catlocarpio siamensis	104.50	2.15
17		paralaubuca barroni	100.00	2.06
18	¢ี% \%	Notopterus notopterus	93.33	1.92
19		Macrognathus sp.	93.29	1.92
20	(intigig	Pristolepis fasciata	79.29	1.63
21	1 ®ี่ $^{\text {miun }}$	Barbonymus sp.	68.00	1.40
22	เึ\|บM\%nู	Cyclocheilichthys sp.	51.00	1.05

The average fish catch per fisher/ year of the top 10 fish species which were cought during last 12 months in Ou Reung Ov, Tboung Kmum province: 1. Pangasius mekongensis was $750.00 \mathrm{~kg} / \mathrm{year}(15.42 \%), 2$. Gymnosstomus sp. was $497.11 \mathrm{~kg} /$ year (10.22%), 3 . Labiobarbus siamensis was $448.86 \mathrm{~kg} / \mathrm{year}$ (9.23 \%), 4. Akysis sp. was $385.13 \mathrm{~kg} /$ year (7.92 \%), 5 . Channa striata was $286.67 \mathrm{~kg} /$ year (5.89 \%), 6 . Puntioplites proctozysron was $273.11 \mathrm{~kg} /$ year (5.62%), 7 . Wallago attu was $248.75 \mathrm{~kg} /$ year (5.11%), 8 . Belodontichthys truncates was $240.00 \mathrm{~kg} /$ year (4.93 \%), 9 . Hemibagrus sp. was $201 \mathrm{~kg} /$ year (4.13 \%), and 10 . Osteochilus sp. was $200 \mathrm{~kg} /$ year (4.11%) (Table 15).

Table 16. The fish species caught in last 12 months in flooded rice field, Chhoeung Prey, Kampong Chham province

No.	Khmer Name	Scintific Name	Average caught per year (kg)	Percentage
1		Channa striata	520.00	11.53
2		Parachela ouygastoides	465.00	10.31
3	\|®ี่กตุ:	Akysis sp.	425.00	9.42
4	Tive	Osteochilus sp.	384.29	8.52
5	เี่กู์	Notopterus notopterus	369.00	8.18
6		Hypsitarbus sp.	350.00	7.76
7	finigig	Pristolepis fasciata	347.50	7.70
8		Puntioplites proctozysron	345.00	7.65
9	(\%94]	Gymnosstomus sp.	345.00	7.65
10		Catlocarpio siamensis	180.00	3.99
11		Wallago attu	172.50	3.82
12		Cyclocheilichthys sp.	150.00	3.33

13	เี่	Hemibagrus sp.	145.71	3.23
14	เึ่ต่	Anabas testudineus	102.00	2.26
15	เท\|r	Cirrhinus microlepsis	90.00	2.00
16	¢゙¢	Macrognathus sp.	90.00	2.00
17	นี้มกลกด	Amblyceps sp.	30.00	0.67

The average fish catch per fisher/ year of the top 10 fish species which were cought during last 12 months in flooded rice field, Choeung Prey, Kampong Cham province: 1. Channa striata was $520.00 \mathrm{~kg} / \mathrm{year}$ (11.53 \%), 2. Parachela ouygastoides was $465 \mathrm{~kg} /$ year (10.31%), 3. Akysis sp. was $425 \mathrm{~kg} /$ year (9.42%), 4. Osteochilus sp. was $384.29 \mathrm{~kg} /$ year (8.52%), 5 . Notopterus notopterus was $369 \mathrm{~kg} /$ year (8.18%), 6 . Hypsitarbus sp. was $350 \mathrm{~kg} / \mathrm{year}$ (7.76 \%), 7. Pristolepis fasciata was $347.50 \mathrm{~kg} / \mathrm{year}(7.70 \%)$, 8 . Puntioplites proctozysron was $345.00 \mathrm{~kg} /$ year (7.65%), 9 . Gymnosstomus sp. was $345.00 \mathrm{~kg} /$ year (7.65 $\%$), and 10. Catlocarpio siamensis was $180 \mathrm{~kg} /$ year (3.99%) (Table 16)..

3.4 Other Aquatic Animals (OAAs) caught in Last 12 months

Table 17. Frogs caught in last 12 months by all individuals

Catch Time	Total Catch (kg)	Average (kg)
All year round	275.5	91.83
Dry Season	1	1

The average frog catch in last 12 months was $91.8 \mathrm{~kg} /$ person/year all year all, while an average frog catch in dry season ony $1 \mathrm{~kg} /$ person/year (Table 17)

Table 18. Frogs caught in last 12 months by sites

Sites	Catch Time	Total Catch (kg)	Average (kg)
Tributary	Dry Season	1	1.00
Flooded rice field, O Roeung Ouv	All year round	200.5	100.25
Flooded rice field, Choeung Prey	All year round	75	75

The average frog catch in last 12 months in flooded rice field, in Ou Reung Ov, Tboung Khmom province was $100.2 \mathrm{~kg} /$ person/year all year all. The second frog catch founed to be in flooded rice field, Choeung Prey, Kampong Cham province was $75 \mathrm{~kg} /$ person/year in all year all. While an average frog catch in tributary, Peam Ro, Prey Veng province in dry season ony $1 \mathrm{~kg} /$ person/year (Table 18)

Table 19. Shrimps caught in last 12 months by all fishers

Catch Time	Total Catch $(\mathbf{k g})$	Average (kg)

All year round	1817.5	139.81
Dry Season	5	5.00
Flood season	1841.3	153.44

The average shrimp catches in last 12 months was $139.8 \mathrm{~kg} /$ person/year for all year all and the average shrimp catch in flood season 153.4 kg per person/year. While in dry season, shrimp catch was only $5 \mathrm{~kg} /$ person/year (Table 19).

Table 20. Shrimps caught in last $\mathbf{1 2}$ months by sites

Sites	Catch Time	Total Catch (kg)	Average (kg)
Tributary	Dry Season	79	39.5
	Flood season	0.3	0.3
Flooded forest	Flood season	120	40
Flooded rice field, O Roeung Ouv	All year round	1480.5	370.12
	Flood season	1260	315
Flooded rice field, Choeung Prey	All year round	258	36.85
	Dry Season	5	5
	Flood season	461	115.25

The average shrimp catches in last 12 months in flooded rice field ,Ou Reung Ov, Tboung Khmom province founded to be highest among others sites was $370.1 \mathrm{~kg} /$ person $/$ year all year round. Followed by flooded rice field, Choeung Prey, Kampong Cham province was $115.2 \% \mathrm{~kg} /$ person $/$ year in flood season (Table 20)

Table 21. Crabs caught in last 12 months by all fishers

Catch Time	Total Catch (kg)	Average (kg)
All year round	22375.5	438.74
Dry Season	4353	1451.00
Flood season	3171	186.53

The average crab catches in last 12 months in dry season was $1451 \mathrm{~kg} /$ person/year in dry season, followed by all year round the average crab catch was $438.7 \mathrm{~kg} /$ person/year. While in flood season was $186.5 \mathrm{~kg} /$ person/year (Table 21).

Table 22. Crabs caught in last $\mathbf{1 2}$ months by sites

Sites	Catch Time	Total Catch (kg)	Average (kg)
Tributary	All year round	2349	261.00
	Dry Season	3	3.00
	Flood season	32	16.00

Flooded forest	All year round	1665.5	118.96
	Flood season	512	102.40
Flooded rice field, O Roeung Ouv	All year round	3451	345.10
	Flood season	1369	273.80
Flooded rice field, Choeung Prey	All year round	14910	828.33
	Flood season	1258	251.60

Across the studied sites, flooded rice field, Choeung Prey, Kampong Cham province founded to be the highest crab catch with an average crab catch $828.3 \mathrm{~kg} /$ person $/$ year all year round and $251.6 \mathrm{~kg} /$ person $/$ yaer in flood season. Followed by flooded rice field, Ou Roeung Ov, Tboung Khmom with the average crab catch $345.1 \mathrm{~kg} /$ person/year all year round and $273.8 \mathrm{~kg} /$ person/year in flood season (Table 22)

Table 23. Snakes caught in last $\mathbf{1 2}$ months by all individuals

Catch Time	Total Catch $(\mathbf{k g})$	Average (kg)
All year round	16085	1005.31
Dry Season	245	40.83
Flood season	62	8.86

The average water snake catch in last 12 months all year round was $1005.3 \mathrm{~kg} /$ person $/$ year, followed by dry season, the average water sanke catch was $40.8 \mathrm{~kg} /$ person $/$ year. While in flood season was 8.8 $\mathrm{kg} /$ person/year (Table 23).

Table 24. Sankes caught in last 12 months by sites

Sites	Catch Time	Total Catch (kg)	Average (kg)
Tributary	All year round	1	1.00
Flooded forest	All year round	53	10.60
	Dry Season	62	31.00
	Flood season	50	25.00
	All year round	Dry Season	9

Flooded rice field, Choeung Prey, Kampong Cham province founded to be the highest water sanke catch with an average water snake catch $2670.3 \mathrm{~kg} /$ person $/$ year all year round and $60.66 \mathrm{~kg} /$ person $/$ yaer in dry
season. Followed by flooded forest, Tboung Kmum province with the average water sanke catch 31 $\mathrm{kg} /$ person/year in dry season (Table 24).

3.5 Fish species most recent catch

Table 25. Fish species most recent catch by all sites and all individuals

No.	Khmer Name	Scientific Name	Frequency	Percentage
1	1ี่ำด	Gymnosstomus sp.	72	9.34
2		Puntioplites proctozysron	68	8.82
3	10゙กตุ\%	Akysis sp.	57	7.39
4	เึ\|	Pangasius sp.	39	5.06
5	เ゙ตํา	Hemibagrus sp.	36	4.67
6	ตี่ทก	Labeo Chrysophekadion	34	4.41
7		Hypsitarbus sp.	33	4.28
8		Labiobarbus siamensis	32	4.15
9	ชีทํา	Anabas testudineus	29	3.76
10	(1) M	Osteochilus sp.	25	3.24
11		paralaubuca barroni	24	3.11
12		Parachela ouygastoides	24	3.11
13		Pristolepis fasciata	23	2.98
14		Barbonymus sp.	18	2.33
15	¢07m	Pangasius larnaudii	18	2.33
16		Macrognathus sp.	17	2.20
17		Pangasius mekongensis	15	1.95
18	เที่umin	Cyclocheilichthys sp.	15	1.95
19		Osteochilas melanpleura	14	1.82
20		Yasuhikotakia sp.	13	1.69
21	เี่กับู	Thynnichthys Thynnoides	12	1.56
22	¢ixn m	Trichohodus sp.	11	1.43
23	10¢กำumu	Belodontichthys truncatus	10	1.30
24	15\% \% ¢	Labiobarbus leptocheila	9	1.17
25		Channa striata	9	1.17
26		Clupeichthys sp.	9	1.17
27	เช์กูก	Chyclocheilichthys enoplos	8	1.04
28	(196)	Rasbora sp.	8	1.04
29	10i\%	Pangasius conchophilus	8	1.04
30		Cynoglossus sp.	7	0.91
31		Cosmochilus harmandi	6	0.78
32		Catlocarpio siamensis	6	0.78

33		Kryptoplerus sp．	5	0.65
34		Bagrichthys obscurus	5	0.65
35	｜1＂ㅌํ	Oryzias sp．	5	0.65
36	1『゙ถก	Notopterus notopterus	5	0.65
37	ถึ่ก	Oxyeleotris	4	0.52
38	（1ّ）	Boesemania microlepis	4	0.52
39		Parambassis sp．	4	0.52
40	¢ิ¢	Cirrhinus microlepsis	3	0.39
41	เที่นกกู	Amblyceps sp．	3	0.39
42	tif	Mastacembelus armatus	3	0.39
43	¢ีํ ${ }^{\text {¢ }}$	Hampala sp．	3	0.39
44		Wallago attu	2	0.26
45		Oreochromis sp．	2	0.26
46		Osteochilus schlegeli	2	0.26
47	（F゙¢	Xenentodon cancila	2	0.26
48	บึ｜x \％	Probarbus sp．	1	0.13
49		Pangasius polyuranodom	1	0.13
50		Coilia lindmani	1	0.13
51		Cirrhinus microlepis	1	0.13
52	ยี่าบก	Hypophthalmichthys molitrix	1	0.13
53		Mekongina erythrospila	1	0.13
54		Ompok eugeneiatus	1	0.13
55		Parambassis wolffii	1	0.13
56		Babichthys laevis	1	0.13
57		Leptobarbus hoeveni	1	0.13

Fish species are most recent catch by all sites and all individuals founded 57 fish species．Frequency and percent distribution of the top 10 fish species：1．Gymnosstomus sp．was 72 （ 9.3% ），2．Puntioplites proctozysron was $68(8.8 \%)$ ， 3 ．Akysis sp．was $57(7.4 \%)$ ， 4 ．Pangasius sp．was $39(5.1 \%), 5$ ．Hemibagrus sp．was 36 （4．7\％），6．Labeo Chrysophekadion was 34 （4．4\％），7．Hypsitarbus sp．was 33 （4．3\％）， 8. Labiobarbus siamensis was 32 （ 4.2% ），9．Anabas testudineus was 29 （ 3.8% ），and 10．Osteochilus sp．was 25 （3．2\％）（Table 25）．

Table 26．Fish species most recent catch in mainstream，Muk Kampul，Kandal Province

No．	Khmer Name	Scientific Name	Frequency	Percentage
1	｜i¢『％	Puntioplites proctozysron	12	11.01
2	限路界	Labeo Chrysophekadion	11	10.09
3	10	Pangasius sp．	11	10.09
4	ถึดึリ	Gymnosstomus sp．	10	9.17
5		Hypsitarbus sp．	8	7.34
6		Osteochilas melanpleura	6	5.50
7	1゙กี่	Hemibagrus sp．	6	5.50
8	［i๋\％	Pangasius conchophilus	6	5.50
9	เึツญ｜	Pangasius mekongensis	6	5.50
10	［ifm	Pangasius larnaudii	6	5.50
11	เึเทึ	Kryptoplerus sp．	3	2.75
12	¢ี¢	Cynoglossus sp．	3	2.75
13		Labiobarbus siamensis	3	2.75
14	คน๋กก	Chyclocheilichthys enoplos	2	1.83
15		Thynnichthys Thynnoides	1	0.92
16		Wallago attu	1	0.92
17		Oreochromis sp．	1	0.92
18		paralaubuca barroni	1	0.92
19		Oxyeleotris	1	0.92
20	เที์ต¢¢	Bagrichthys obscurus	1	0.92
21		Labiobarbus leptocheila	1	0.92
22	เี้บที่า	Boesemania microlepis	1	0.92
23		Pangasius polyuranodom	1	0.92
24	ถึ｜ฺุ	Osteochilus sp．	1	0.92
25	｜19ํํํ	Oryzias sp．	1	0.92
26	¢ี⁄กun	Hypophthalmichthys molitrix	1	0.92
27		Yasuhikotakia sp．	1	0.92
28		Catlocarpio siamensis	1	0.92
29		Babichthys laevis	1	0.92
30	¢ี¢	Leptobarbus hoeveni	1	0.92

Fish species are most recent catch in Mainstream，Muk Kampul，Kandal province founded 30 fish species． Frequency and percent distribution of the top 10 fish species：1．Puntioplites proctozysron was 12 （11\％）， 2．Labeo Chrysophekadion was 11 （10．1\％），3．Pangasius sp．was 11 （ 10.1% ），4．Gymnosstomus sp．was $10(9.2 \%), 5$ ．Hypsitarbus sp．was $8(7.3 \%), 6$ ．Osteochilas melanpleura was $6(5.5 \%), 7$ ．Hemibagrus sp． was $6(5.5 \%)$ ， 8 ．Pangasius conchophilus was 6 （ 5.5% ），9．Pangasius mekongensis was 6 （ 5.5% ），and 10 ． Pangasius larnaudii was 6 （ 5.5% ）（Table 26）．

Table 27．Fish species most recent catch in tributary habitats site，Peam Ro，Prey Veng province

No．	Khmer Name	Scientific Name	Frequency	Percentage
1	代げイ	Puntioplites proctozysron	18	16.67
2	¢｜T	Pangasius sp．	17	15.74
3	เี๋ทิท	Thynnichthys Thynnoides	5	4.63
4		Hypsitarbus sp．	5	4.63
5		Cynoglossus sp．	4	3.70
6		Clupeichthys sp．	4	3.70
7	ธี๋กตุ่	Akysis sp．	4	3.70
8	ธี่ากญ่	Anabas testudineus	4	3.70
9	10ํํ	Rasbora sp．	3	2.78
10	เ゙กี่	Hemibagrus sp．	3	2.78
11	ธี®nixumu	Belodontichthys truncatus	3	2.78
12	ตีที่ก	Labeo Chrysophekadion	3	2.78
13	（1）	Boesemania microlepis	3	2.78
14	｜ึ¢¢	Pangasius mekongensis	3	2.78
15		Cosmochilus harmandi	2	1.85
16		Bagrichthys obscurus	2	1.85
17	¢゙『ึ	Channa striata	2	1.85
18	10］	Pangasius conchophilus	2	1.85
19	เี๋y	Gymnosstomus sp．	2	1.85
20	（1）	Osteochilus sp．	2	1.85
21	โ゙¢	Macrognathus sp．	2	1.85
22		Mastacembelus armatus	2	1.85
23	ธีํ	Hampala sp．	2	1.85
24	เฺฺّ¢	Osteochilas melanpleura	1	0.93
25	เที\％	Kryptoplerus sp．	1	0.93
26		Barbonymus sp．	1	0.93
27	1゙¢ ¢\％	Labiobarbus leptocheila	1	0.93
28		Pristolepis fasciata	1	0.93
29	（1⁄ํํ	Oryzias sp．	1	0.93
30	ピกโโ¢	Yasuhikotakia sp．	1	0.93
31		Cyclocheilichthys sp．	1	0.93
32	ตีคกํ	Trichohodus sp．	1	0.93
33		Parachela ouygastoides	1	0.93
34	（f）｜mb	Xenentodon cancila	1	0.93

Fish species are most recent catch catch in Tributary，Peam Ro，Prey Veng Province founded 34 fish species．Frequency and percent distribution of the top 10 fish species：1．Puntioplites proctozysron was 18 （ 16.7% ），2．Pangasius sp．was 17 （ 15.7% ），3．Thynnichthys Thynnoides was 5 （ 4.6% ），4．Hypsitarbus sp．was $5(4.6 \%), 5$ ．Cynoglossus sp．was 4 （3．7\％）， 6 ．Clupeichthys sp．was 4 （3．7\％），7．Akysis sp．was 4
（3．7\％），8．Anabas testudineus was 4 （3．7\％），9．Rasbora sp．was 3 （ 2.8% ），and 10．Hemibagrus sp．was 3 （2．8\％）（Table 27）．

Table 28．Fish species most recent catch in flooded forest，Tboung Khmom

No．	Khmer Name	Scientific Name	Frequency	Percentage
1	［figu	Gymnosstomus sp．	16	8.42
2	（in）	Akysis sp．	14	7.37
3	代げท	Puntioplites proctozysron	11	5.79
4		Pristolepis fasciata	10	5.26
5	อีตํา	Hemibagrus sp．	9	4.74
6	ชี่าเทก	Barbonymus sp．	9	4.74
7	（1）	Osteochilus sp．	9	4.74
8	ชี่ากญ่	Anabas testudineus	9	4.74
9		paralaubuca barroni	8	4.21
10	｜icl	Pangasius sp．	8	4.21
11		Labiobarbus siamensis	7	3.68
12		Parachela ouygastoides	7	3.68
13	ゼที่	Hypsitarbus sp．	6	3.16
14	ฺีที่	Labeo Chrysophekadion	6	3.16
15		Yasuhikotakia sp．	6	3.16
16		Belodontichthys truncatus	5	2.63
17	10\％¢¢	Labiobarbus leptocheila	5	2.63
18	เitumen	Cyclocheilichthys sp．	5	2.63
19	¢ี๋m	Pangasius larnaudii	5	2.63
20	เี๋ทิท	Thynnichthys Thynnoides	4	2.11
21		Osteochilas melanpleura	4	2.11
22		Cirrhinus microlepsis	3	1.58
23	（10ํ	Rasbora sp．	2	1.05
24		Oxyeleotris	2	1.05
25	ธี¢ฺை	Pangasius mekongensis	2	1.05
26		Clupeichthys sp．	2	1.05
27	ตีกกญ	Trichohodus sp．	2	1.05
28		Parambassis sp．	2	1.05
29		Osteochilus schlegeli	2	1.05
30	เ゙ําก	Chyclocheilichthys enoplos	1	0.53
31		Wallago attu	1	0.53
32	เี่าก	Kryptoplerus sp．	1	0.53
33		Cosmochilus harmandi	1	0.53
34		Channa striata	1	0.53
35	¢ึม\％ัลู	Amblyceps sp．	1	0.53
36	เึ｜\％	Cirrhinus microlepis	1	0.53

37	โี่gุ่	Macrognathus sp.	1	0.53
38		Catlocarpio siamensis	1	0.53
39	โฺึญูต	Notopterus notopterus	1	0.53

Fish species are most recent catch catch in llooded forest, Tboung Khmom, Tboung khmom province founded 39 fish species Frequency and percent distribution of the top 10 fish species: 1. Gymnosstomus sp. was $16(8.4 \%), 2$. Akysis sp. was 14 (3.4\%), 3. Puntioplites proctozysron was 11 (5.8\%), 4. Pristolepis fasciata was $10(5.3 \%)$, 5 . Hemibagrus sp. was $9(4.7 \%), 6$. Barbonymus sp. was $9(4.7 \%)$, 7 . Osteochilus sp. was $9(4.7 \%)$, 8. Anabas testudineus was 9 (4.7\%), 9. paralaubuca barroni was 8 (4.2%), and 10. Pangasius sp. was 8 (4.2%) (Table 28).

Table 29. Fish species most recent catch in flooded rice field, Ou Roeung Ov, Tboung Khmom province

No.	Khmer Name	Scientific Name	Frequency	Percentage
1		Gymnosstomus sp.	24	12.44
2	โคี่คตบต์ทุก	Labiobarbus siamensis	22	11.40
3	โฺึกตุ\%	Akysis sp.	21	10.88
4		Puntioplites proctozysron	16	8.29
5	¢ี¢\%ำ	Hemibagrus sp.	9	4.66
6	โฺึโฺต	Anabas testudineus	9	4.66
7		Hypsitarbus sp.	8	4.15
8		Cyclocheilichthys sp.	8	4.15
9		paralaubuca barroni	7	3.63
10	เที่ทู่ก	Labeo Chrysophekadion	7	3.63
11	โรีกโู่	Pristolepis fasciata	7	3.63
12	ธี่นก์	Osteochilus sp.	6	3.11
13		Chyclocheilichthys enoplos	5	2.59
14	เตีกโ込ก	Yasuhikotakia sp.	5	2.59
15	เรี่าใัก	Barbonymus sp.	4	2.07
16		Macrognathus sp.	4	2.07
17	เดีกำต	Trichohodus sp.	4	2.07
18	ธีฺ๋ึษิท	Thynnichthys Thynnoides	2	1.04
19		Osteochilas melanpleura	2	1.04
20	โุึงกัณกด	Amblyceps sp.	2	1.04
21	(คี่บำ	Oryzias sp.	2	1.04
22		Catlocarpio siamensis	2	1.04
23	โฺ์ถูต	Notopterus notopterus	2	1.04
24		Oreochromis sp.	1	0.52
25	เี่ตบํ	Rasbora sp.	1	0.52
26		Belodontichthys truncatus	1	0.52
27	โฺี มี	Oxyeleotris	1	0.52

28		Cosmochilus harmandi	1	0.52
29		Labiobarbus leptocheila	1	0.52
30		Channa striata	1	0.52
31	¢゙¢	Pangasius sp．	1	0.52
32		Clupeichthys sp．	1	0.52
33		Mekongina erythrospila	1	0.52
34		Ompok eugeneiatus	1	0.52
35		Mastacembelus armatus	1	0.52
36		Parambassis wolffii	1	0.52
37	เีํา	Hampala sp．	1	0.52
38	T゙ロ｜y Mn in	Parachela ouygastoides	1	0.52

Fish species are most recent catches in flooded rice field，Ou Roeung Ov，Tboung Khmom province founded 38 fish species．Frequency and percent distribution of the top 10 fish species：1．Gymnosstomus sp．was 24 （ 12.4% ），2．Labiobarbus siamensis was 22 （ 11.4% ），3．Akysis sp．was 21 （ 10.9% ）， 4. Puntioplites proctozysron was 16 （ 8.3% ）， 5 ．Hemibagrus sp．was 9 （4．7\％），6．Anabas testudineus was 9 $(4.7 \%), 7$ ．Hypsitarbus sp．was $8(4.15 \%), 8$ ．Cyclocheilichthys sp．was 8 （ 4.15% ），9．paralaubuca barroni was 7 （3．6\％），and 10．Labeo Chrysophekadion was 7 （3．6\％）（Table 29）．

Table 30．Fish species most recent catch in flooded rice field，Chhoeung Prey，Kampong Chham province

No．	Khmer Name	Scientific Name	Frequency	\％
1		Gymnosstomus sp．	20	11.70
2	（1）	Akysis sp．	18	10.53
3		Parachela ouygastoides	15	8.77
4	ชี่บท	Puntioplites proctozysron	11	6.43
5	¢ิ¢	Macrognathus sp．	10	5.85
6	เีํา	Hemibagrus sp．	9	5.26
7		paralaubuca barroni	8	4.68
8	¢ีที่	Labeo Chrysophekadion	7	4.09
9	เที่	Osteochilus sp．	7	4.09
10	ชี่าญ่	Anabas testudineus	7	4.09
11	อี์	Pangasius larnaudii	7	4.09
12	¢゙กี่	Hypsitarbus sp．	6	3.51
13		Channa striata	5	2.92
14		Pristolepis fasciata	5	2.92
15	ชิกับก	Barbonymus sp．	4	2.34
16	ธ゙¢ฺ\％	Pangasius mekongensis	4	2.34
17	เี่กถ	Trichohodus sp．	4	2.34
18	170ํx	Rasbora sp．	2	1.17

19		Cosmochilus harmandi	2	1.17
20		Bagrichthys obscurus	2	1.17
21	｜iv	Pangasius sp．	2	1.17
22		Clupeichthys sp．	2	1.17
23		Catlocarpio siamensis	2	1.17
24	｜ี¢	Notopterus notopterus	2	1.17
25		Parambassis sp．	2	1.17
26	［1゙¢	Osteochilas melanpleura	1	0.58
27	ビก̊ก ¢	Belodontichthys truncatus	1	0.58
28	ビ¢ ¢ ¢	Labiobarbus leptocheila	1	0.58
29		Probarbus sp．	1	0.58
30		Coilia lindmani	1	0.58
31	｜ี์ํx	Oryzias sp．	1	0.58
32	เทtumsm	Cyclocheilichthys sp．	1	0.58
33	（1）	Xenentodon cancila	1	0.58

Fish species are most recent catches in flooded rice field，Chhoeung Prey，Kampong Chham province founded 33 fish species．Frequency and percent distribution of the top 10 fish species：1．Gymnosstomus sp．was 20 （ 11.7% ），2．Akysis sp．was 18 （ 10.5% ），3．Parachela ouygastoides was 15 （8．77\％）， 4. Puntioplites proctozysron was 11 （ 6.43% ），5．Macrognathus sp．was 10 （ 5.85% ），6．Hemibagrus sp．was 9 （ 5.25% ），7．paralaubuca barroni was $8(4.68 \%)$ ， 8 ．Labeo Chrysophekadion was 7 （ 4.09% ）， 9 ．Osteochilus sp．was $7(4.09 \%)$ ，and 10 ．Anabas testudineus was $7(4.09 \%)$（Table 30）．

3．6 Disposal of catch caught in last $\mathbf{1 2}$ months in dry and wet seasons

Table 31．The disposal of catch caught in last 12 months by consumed，sold，processing，given to relative

Characteristics	Average Consumption in wet season (kg)	Average Consumption in dry season (kg)	Average sold in wet season (kg)	Average sold in dry season (kg)	Average processed in wet season (kg)	Average processed in dry season (kg)	Average given in wet season (kg)	Average given in dry season (kg)
All fishers	126.05	116.51	1044.92	992.38	25.55	34.02	27.12	26.34
Sites								
Mainstream	100.01	96.49	665.97	1503.91	28.00	48.46	19.21	16.28
Tributary， Peam Ro	98.83	119.33	986.73	485.13	29.74	42.00	41.50	19.33
Flooded	139.02	110.73	1009.13	910.19	23.72	17.62	22.60	32.57

forest, Tboung Kmum								
Flooded rice field, O Roeung Ouv	122.40	121.95	1300.85	1181.73	21.00	20.97	28.84	33.41
Flooded rice field, Chhoeung Prey	164.71	144.14	1236.94	600.73	28.64	23.67	29.54	30.57

Table 31 shows, the average fish consumption in wet and dry season found at about $126 \mathrm{~kg} /$ fisher and 116.5 kg /fisher, respectively. The average fish sold in wet and dry season found at about $1044.9 \mathrm{~kg} /$ fisher and $992.4 \mathrm{~kg} /$ fisher, respectively. The average fish processed in wet and dry season found at about 25.5 kg /fisher and 34 kg /fisher, respectively. The average fish donated in wet and dry season found at about $271 \mathrm{~kg} /$ fisher and 26.3 kg /fisher, respectively.

3.7 Fisheries trend compared to last 5 years in term of abundance biomass and fish length

Table 32. Fisheries trend in last 5 year in term of abundance biomass

Characteristics	Abundance Biomass	Frequency	$\mathbf{\%}$
All fishers	No change	1	0.57
	Increase	18	10.29
	Decrease	156	89.14
Mainstream, Muk Kampul			
Tributary, Peam Ro	Decrease	35	100.00
Flooded forest, Tboung Khmom	Decrease	35	100.00
	Increase	7	20.00
	Decrease	28	80.00
Flooded rice field, Chhoeung Prey	Increase	8	22.86
	Decrease	27	77.14
	No change	1	2.86
	Increase	3	8.57
	Decrease	31	88.57

Fisheries trend in the last 5 years in term of fish abundance biomass, more than two-third (89.1\%) founded fish biomass have decreased and less than 1% said fish biomass has been no change (Table 32). Across the studied sites, mainstream and tributary sites found that fish biomass have decreased 100% in the last 5 yaers. While other sites, Tributary, Peam Ro; flooded forest, Tboung Khmom Flooded rice field, O Roeung Ouv; and Flooded rice field, Chhoeung Prey fish biomass have decreased $80 \%, 77.1 \%$ and 88.6%, respectively.

Table 33. Reasons for changes in term of abundance biomass by all individuals

.No.	Characteristics	Frequency	\%
1	Using illegal fishing gear	60	23.26
2	Electric-Fishing Gear	56	21.71
3	Use fyke net for catching fish	30	11.63
4	Losing flooded forest	29	11.24
5	Too many fishermen	22	8.53
6	Changing of water regime	8	3.10
7	Abolition of Fishing Lots	6	2.33
8	Illegal fishing crackdown	6	2.33
9	Availability of flooded forest	4	1.55
10	Poisoned agricultural Using	4	1.55
11	Catch more than previous time	4	1.55
12	Climate Change	4	1.55
13	Worker in Thailand and Korea	3	1.16
14	Using modern fishing gear	3	1.16
15	Losing natural feeds	2	0.78
16	Water receded quickly	2	0.78
17	Filling up lake	2	0.78
18	Fishermen became less than before	2	0.78
19	Increasing fish larvae	2	0.78
20	Dam/dyke construction	2	0.78
21	Catching larvae/fingerling	1	0.39
22	Cutting down of flooded forests for agriculture	1	0.39
23	Not changing	1	0.39
24	Extinction of big fish species	1	0.39
25	Fish migrating from Srung Treng province	1	0.39
26	Impacts on water flow	1	0.39
27	Using Yang Kaiv for catching fish	1	0.39

Reasons for changing fish biomass trend during last 5 years found that illegall fishing gears were the main factors, accounting for nearly one-fourth (23.3%), followed by electric-fishing gear with 21.7%. While fyke net using and losing flooded forest were similar percentages at around 11.6% and 11.2%, respectively (Table 33).

. Table 34. Reasons for change in term of abundance biomass by sites

Sites	No	Characteristics	Frequency	\%
Mainstream, Muk Kampul	1	Electric-Fishing Gear	11	27.5
	2	Using illegal fishing gear	6	15
	3	Use fyke net for catching fish	4	10
	4	Too many fishermen	4	10
	5	Changing of water regime	4	10

	6	Climate Change	3	7.5
	7	Losing flooded forest	2	5
	8	Filling up lake	1	2.5
	9	Cutting down of flooded forests for agriculture	1	2.5
	10	Impacts on water flow	1	2.5
	11	Using modern fishing gear	1	2.5
	12	Dam/dyke construction	1	2.5
	13	Using Yang Kaiv for catching fish	1	2.5
Tributary, Peam Ro	1	Using illegal fishing gear	20	32.26
	2	Electric-Fishing Gear	15	24.19
	3	Losing flooded forest	9	14.52
	4	Too many fishermen	8	12.90
	5	Use fyke net for catching fish	7	11.29
	6	Water receded quickly	1	1.61
	7	Changing of water regime	1	1.61
	8	Climate Change	1	1.61
Flooded forest, Tboung Khmom	1	Using illegal fishing gear	14	26.92
	2	Losing flooded forest	12	23.08
	3	Electric-Fishing Gear	9	17.31
	4	Use fyke net for catching fish	7	13.46
	5	Catch more than previous time	3	5.77
	6	Losing natural feeds	2	3.85
	7	Too many fishermen	2	3.85
	8	Water receded quickly	1	1.92
	9	Not changing	1	1.92
	10	Changing of water regime	1	1.92
Flooded rice field, Ou Roeung Ov	1	Illegal fishing	6	15
	2	Electric-Fishing Gear	5	12.5
	3	Abolition of Fishing Lots	5	12.5
	4	Use fyke net for catching fish	3	7.5
	5	Worker in Thailand and Korea	3	7.5
	6	Too many fishermen	2	5
	7	Availability of flooded forest	2	5
	8	Fishermen became less than before	2	5
	9	Using illegal fishing gear	2	5
	10	Changing of water regime	2	5
	11	Losing flooded forest	1	2.5
	12	Filling up lake	1	2.5
	13	Catching larvae/fingerling	1	2.5
	14	Increasing fish larvae	1	2.5
	15	Catch more than previous time	1	2.5

16	Extinction of big fish species	1	2.5	
	17	Fish migrating from Srung Treng province	1	2.5
	18	Dam/dyke construction	1	2.5
Flooded rice field, Chhoeung Prey	1	Using illegal fishing gear	18	28.13
	Electric-Fishing Gear	16	25.00	
	3	Use fyke net for catching fish	9	14.06
	Too many fishermen	6	9.38	
	5	Losing flooded forest	5	7.81
	6	Poisoned agricultural Using	4	6.25
	7	Availability of flooded forest	2	3.13
	8	Using modern fishing gear	2	3.13
	9	Abolition of Fishing Lots	1	1.56
	10	Increasing fish larvae	1	1.56

In mainstream site, Muk Kampul, electric-fishing gear and illegal-fishing gear, were the two main reasons for changing fish biomass in the last 5 years, accounting for 27.5% and 15%, respectively. While fyke net fishing gear, too many fishermen and changing water regime were the third largest factors wich have resulted in changing fish biomass in mainstream. In tributary, Peam Ro, illegal fishing gears, electricfishing gear, and losing flooded forest were the main three reasons for fish biomass changing were 32.2%, 24.2%, and 14.5%, respectively. In flooded forest, Tboung Khmom, illegal fishing gear, losing flooded forest, and electric-fishing gear were the key factors for changing fish biomass, founded at $26.9 \%, 23 \%$, and 17.3%, respectively. In flooded rice field, Ou Roeung Ov, illegal fishing gears, electric-fishing Gear, and abolition of Fishing Lots were the three main factors which have degraded fish biomass were at 15%, 12.5%, and 12.5%, respectively. In flooded rice field, Chhoeung Prey, illegal fishing gears, electricfishing gear, and fyke net fishing gear were the main reasons for changing fish biomass, accounting for $28.1 \%, 25 \%$, and 14%, respectively (Table 34).

Table 35. Fisheries trend in last 5 year in term of fish length

Characteristics	Fish Length	Frequency	\%
All fishers	No change	34	19.43
	Increase	14	8.00
	Decrease	127	72.57
Sites			
	No change	10	28.57
	Decrease	25	71.43
Tributary, Peam Ro	No change	2	5.71
	Decrease	33	94.29
Flooded forest, Tboung Khmom	No change	6	17.14
	Decrease	29	82.86
Flooded rice field, Ou Roeung Ov	No change	8	22.86
	Increase	14	40.00

	Decrease	13	37.14
Flooded rice field, Chhoeung Prey	No change	8	22.86
	Decrease	27	77.14

Fisheries trend in the last 5 year in term of fish length, about 72.5% founded fish length have decreased and less than 19% said fish biomass has been no change (table 35). Across the studied sites, mainstream at Muk Kampul; tributary at Peam Ro; flooded forest at Tboung Khmom; flooded rice field at Ou Roeung Ov; and flooded rice field at Chhoeung respondents answered that fish length have decreased at 71.4%, $94.3 \%, 82.8 \%, 37.1 \%$ and 77.2%, respectively. While fish length have increased in the last 5 year found only in flooded rice field at O Roeung Ouv was at 40%.

Table 36. Reasons for change in term of fish length by all individuals

No	LenthReasion	Frequency	$\%$
1	Losing natural feeds	28	14.29
2	Losing flooded forest	25	12.76
3	Too many fishermen	25	12.76
4	Using illegal fishing gears	19	9.69
5	Illegal catching larvae/fingerling	18	9.18
6	Electric-Fishing Gear	14	7.14
7	Use fyke net for catching fish	11	5.61
8	Water receded quickly	7	3.57
9	Availability of natural feeds	6	3.06
10	Using electro-fishing	6	3.06
11	Extinction of big fish species	5	2.55
12	Easy way to get out from lake	4	2.04
13	Abolition of Fishing Lots	3	1.53
14	Catch more than previous time	3	1.53
15	Not changing	3	1.53
16	Changing of water regime	3	1.53
17	Availability of flooded forest	2	1.02
18	Water increase not exactly season	2	1.02
19	Impacts on water flow	2	1.02
20	Filling up lake	1	0.51
21	Fishermen became less than before	1	0.51
22	Fishing everywhere	1	0.51
23	Poisoned agricultural Using	1	0.51
24	Increasing fish larvae	1	0.51
25	Illegal fishing crackdown	1	0.51
26	Using modern fishing gear	1	0.51
27	Dam/dyke construction	1	0.51
28	Translucent water	1	0.51
29	Climate Change	1	0.51

Reasons for changing fish length trend in last 5 years found that losing natural feeds were the main factors, accounting for at 14.3%. Followed by losing flooded forest and too many fishermen were the same amount with 12.7%. While illegal fishing gears and illegal illegal catching larvae/fingerling were similar percentages at around 9.7% and 9.2%, respectively (Table 36).

Table 37. Reasons for change in term of fish length by sites

Sites	No	LenthReason	Frequency	$\%$
	1	Losing natural feeds	7	21.21
	2	Electric-Fishing Gear	5	15.15
	3	Too many fishermen	4	12.12
	4	Easy way to get out from lake	4	12.12
	5	Losing flooded forest	3	9.09
	6	Use fyke net for catching fish	2	6.06
	7	Water receded quickly	2	6.06
	8	Using electro-fishing	2	6.06
	9	Impacts on water flow	2	6.06
	10	Filling up lake	1	3.03
	11	Climate Change	1	3.03
	1	Too many fishermen	7	17.07
	2	Illegal catching larvae/fingerling	7	17.07
	3	Losing flooded forest	6	14.63
	4	Losing natural feeds	5	12.20
	5	Using electro-fishing	4	9.76
	6	Electric-Fishing Gear	3	7.32
	7	Use fyke net for catching fish	2	4.88
8	Using illegal fishing gear	2	4.88	
	9	Water increase not exactly season	2	4.88
	10	Water receded quickly	1	2.44
	11	Dam/dyke construction	1	2.44
	12	Translucent water	1	2.44
	1	Using illegal fishing gears	9	21.95
	2	Losing flooded forest	8	19.51
	3	Losing natural feeds	5	12.20
4	Electric-Fishing Gear	4	9.76	
	5	Use fyke net for catching fish	4	9.76
	6	Too many fishermen	4	9.76
	7	Water receded quickly	2	4.88
8	Catch more than previous time	2	4.88	
	9	Catching larvae/fingerling	1	2.44
10	Not changing	1	2.44	

	11	Extinction of big fish species	1	2.44
Flooded rice field, O Roeung Ouv	1	Losing natural feeds	5	13.51
	2	Availability of natural feeds	5	13.51
	3	Too many fishermen	4	10.81
	4	Losing flooded forest	3	8.11
	5	Catching larvae/fingerling	3	8.11
	6	Abolition of Fishing Lots	3	8.11
	7	Availability of flooded forest	2	5.41
	8	Not changing	2	5.41
	9	Changing of water regime	2	5.41
	10	Electric-Fishing Gear	1	2.70
	11	Use fyke net for catching fish	1	2.70
	12	Water receded quickly	1	2.70
	13	Fishermen became less than before	1	2.70
	14	Fishing everywhere	1	2.70
	15	Illegal fishing crackdown	1	2.70
	16	Catch more than previous time	1	2.70
	17	Extinction of big fish species	1	2.70
Flooded rice field, Chhoeung Prey	1	Using illegal fishing gear	8	18.18
	2	Illegal catching larvae/fingerling	7	15.91
	3	Losing natural feeds	6	13.64
	4	Too many fishermen	6	13.64
	5	Losing flooded forest	5	11.36
	6	Extinction of big fish species	3	6.82
	7	Use fyke net for catching fish	2	4.55
	8	Electric-Fishing Gear	1	2.27
	9	Water receded quickly	1	2.27
	10	Availability of natural feeds	1	2.27
	11	Poisoned agricultural Using	1	2.27
	12	Increasing fish larvae	1	2.27
	13	Changing of water regime	1	2.27
	14	Using modern fishing gear	1	2.27

In mainstream site, Muk Kampul, losing natural feeds and electric-fishing gear, were the two main reasons for changing fish biomass in the last 5 years, accounting for 21.2% and 15.1%, respectively. While too many fishermen and easy way to get out from lake were the third largest factors wich have resulted in changing fish length in mainstream, accounting for the same percentage at 12.2%. In tributary, Peam Ro, illegal fishing gears and illegal catching larvae/fingerling were the main three reasons for fish length changing was the same amount at 17%. Losing flooded forest and losing natural feeds were the second and third main factors for changing fish length, accounting for 14.6%, and 12.2%, respectively. In flooded forest, Tboung Khmom, too many fishermen and illegal fishing gear, losing flooded forest, and
electric-fishing gear were the three key factors for changing fish length, founded at $21.9 \%, 19.5 \%$, and 12.2%, respectively. In flooded rice field, Ou Roeung Ov, losing natural feeds and availability of natural feeds were the two main factors which have changing fish length were the same percentage at 15%, 12.5%, respectively. Followed by too many fishermen was at 10.8%. In flooded rice field, Chhoeung Prey, illegal fishing gears, illegal catching larvae/fingerling, and losing natural feeds were the main reasons for changing fish length, accounting for $18.1 \%, 15.9 \%$, and 13.6%, respectively (Table 37).

3.8 Species are no longer caught

Table 38. Fish species are no longer caught by all sites and all individuals

No.	Khmer Name	Scientific Name	Frequency	\%
1		Catlocarpio siamensis	30	11.811
2	¢¢\|	Leptobarbus hoeveni	21	8.268
3		Cirrhinus microlepsis	20	7.874
4		Wallago attu	18	7.087
5	ใี¢ูก	Tenualosa thibaudeaui	18	7.087
6		Barbonymus sp.	17	6.693
7	เีทตูก	Chyclocheilichthys enoplos	16	6.299
8	เีเทิบ	Thynnichthys Thynnoides	14	5.512
9	เี่\|\%	Chitala ornate	11	4.331
10		Mekongina erythrospila	11	4.331
11	¢ีทum	Scomberomorus sinensis	6	2.362
12		Parambassis wolffii	6	2.362
13		Macrochirichthys macrochirus	6	2.362
14		Channa micropeltes	6	2.362
15	[ที๋	Pangasianodon gigas	5	1.969
16	1⁄\%	Datnioides polota	4	1.575
17		Probarbus sp.	4	1.575
18		Mastacembelus armatus	4	1.575
19		Osteochilus schlegeli	3	1.181
20	\|ื¢	Wallago micropogon	3	1.181
21	[i¢	Polynemus sp.	3	1.181
22		Hemibagrus filamentus	3	1.181
23	¢ี¢	paralaubuca barroni	2	0.787
24		Belodontichthys truncatus	2	0.787
25	[9\%	Lycothrissa crocodilus	2	0.787
26		Channa striata	2	0.787
27	¢ี่นกัก	Amblyceps sp.	2	0.787
28	¢ี่าบบ	Hypophthalmichthys molitrix	2	0.787

29		Babichthys laevis	2	0.787	
30	เึ่ใ¢	Osteochilas melanpleura	1	0.394	
31	\|l	lixt	Puntioplites proctozysron	1	0.394
32		Hypsitarbus sp.	1	0.394	
33	¢ีท\%	Kryptoplerus sp.	1	0.394	
34		Oreochromis sp.	1	0.394	
35	\|ivi	Pangasius sp.	1	0.394	
36		Panagasius krempfi	1	0.394	
37	\|itu	Ompok eugeneiatus	1	0.394	
38	[ftm	Pangasius larnaudii	1	0.394	
39	[9\% ${ }^{\text {\% }}$	Hampala sp.	1	0.394	
40	เี้ยูร	Brachgobius sp.	1	0.394	

Fish species are no longer caught by all sites and all individuals founded 40 fish species. Frequency and percent distribution of the top 10 fish species: 1. Catlocarpio siamensis was 30 (11.81%), 2. Leptobarbus hoeveni was 21 (8.27%), 3. Cirrhinus microlepsis was 20 (7.87%), 4. Wallago attu was 18 (7.09%), 5. Tenualosa thibaudeaui was 18 (7.09\%), 6. Barbonymus sp. was 17 (6.69\%), 7. Chyclocheilichthys enoplos was 16 (6.3%), 8. Thynnichthys Thynnoides was 14 (5.51%), 9. Chitala ornate was 11 (4.33%), and 10. Mekongina erythrospila was 11 (4.33\%) (Table 38).

Table 39. Fish species are no longer caught in mainstream site, Muk Kampul, Kandal Province

No.	Site	Khmer Name	Scientific Name	Frequency	\%
1	1		Tenualosa thibaudeaui	13	24.53
2	1		Cirrhinus microlepsis	9	16.98
3	1		Catlocarpio siamensis	6	11.32
4	1		Macrochirichthys macrochirus	6	11.32
5	1	เีّum	Scomberomorus sinensis	5	9.43
6	1	1゙ฆ	Datnioides polota	2	3.77
7	1	เึ๋ก	Pangasianodon gigas	2	3.77
8	1		Osteochilus schlegeli	2	3.77
9	1	เี่ทตก	Chyclocheilichthys enoplos	1	1.89
10	1		Puntioplites proctozysron	1	1.89
11	1		Barbonymus sp.	1	1.89
12	1	คูม	Lycothrissa crocodilus	1	1.89
13	1		Probarbus sp.	1	1.89
14	1		Panagasius krempfi	1	1.89
15	1		Babichthys laevis	1	1.89
16	1		Leptobarbus hoeveni	1	1.89

Fish species are no longer caught in mainstream site，Muk Kampul，Kandal Province founded 16 fish species．Frequency and percent distribution of the top 5 fish species：1．Tenualosa thibaudeaui 13 (24.5%) ，2．Cirrhinus microlepsis was $9(17 \%)$ ，3．Catlocarpio siamensis was 6 （11．3\％）， 4. Macrochirichthys macrochirus was 6 （ 11.3% ），and 5 ．Scomberomorus sinensis was 5 （9．4\％）（Table 39）．

Table 40．Fish species are no longer caught in tributary habitats site，Peam Ro，Prey Veng province

No．	Khmer Name	Scientific Name	Frequency	\％
1	ยู่กับก	Barbonymus sp．	13	20.31
2	¢゙¢	Catlocarpio siamensis	11	17.19
3	¢ัํา	Chitala ornate	8	12.50
4		Parambassis wolffii	6	9.38
5		Wallago attu	5	7.81
6	¢์｜	Leptobarbus hoeveni	4	6.25
7	¢゙ที่	Pangasianodon gigas	3	4.69
8	｜ibut	Wallago micropogon	3	4.69
9		Hemibagrus filamentus	3	4.69
10	ติ์	Cirrhinus microlepsis	2	3.13
11		Channa micropeltes	2	3.13
12		Amblyceps sp．	1	1.56
13	¢ึ์｜\％	Ompok eugeneiatus	1	1.56
14	$\square^{\text {bimm }}$	Pangasius larnaudii	1	1.56
15	โึกญกส	Osteochilus schlegeli	1	1.56

Fish species are no longer caught in tributary habitats site，Peam Ro，Prey Veng province founded 15 fish species．Frequency and percent distribution of the top 5 fish species：1．Barbonymus sp．was 13 （20．3\％）， 2．Catlocarpio siamensis was $11(17.2 \%)$ ，3．Chitala ornate was $8(12.5 \%)$ ，4．Parambassis wolffii was 6 （9．4\％），and 5．Wallago attu was 5 （ 7.8% ）（Table 40）．

Table 41．Fish species are no longer caught in flooded forest，Tboung Khmom

No．	Khmer Name	Scientific Name	Frequency	\％
1		Mekongina erythrospila	8	18.18
2	เฺําก	Chyclocheilichthys enoplos	7	15.91
3		Wallago attu	7	15.91
4	ธี่	Catlocarpio siamensis	4	9.09
5		Leptobarbus hoeveni	4	9.09
6	T¢T¢ ¢ib Tix M	Cirrhinus microlepsis	3	6.82
7	ビ｜mu	Chitala ornate	3	6.82
8		Hypsitarbus sp．	1	2.27

9	¢	Pangasius sp.	1	2.27
10	เึ\|ำ\%	Probarbus sp.	1	2.27
11	โึง\%กลู	Amblyceps sp.	1	2.27
12	เฺึูก	Tenualosa thibaudeaui	1	2.27
13	[゙\%	Mastacembelus armatus	1	2.27
14	ค゙¢	Babichthys laevis	1	2.27
15	เี่ยูร	Brachgobius sp.	1	2.27

Fish species are no longer caught in flooded forest, Tboung Khmom founded 15 fish species. Frequency and percent distribution of the top 5 fish species: 1. Mekongina erythrospila was 8 (18.2\%), 2. Chyclocheilichthys enoplos was $7(15.9 \%)$, 3. Wallago attu was 7 (15.9%), 4. Catlocarpio siamensis was 4 (9.1\%), and 5. Leptobarbus hoeveni was 4 (9.1%), (Table 41).

Table 42. Fish species are no longer caught in flooded rice field, O Roeung Ouv, Tboung Kmum province

No.	Khmer Name	Scientific Name	Frequency	\%
1	¢ึ\|¢ู่	Leptobarbus hoeveni	7	24.14
2		Catlocarpio siamensis	6	20.69
3		Mekongina erythrospila	3	10.34
4	\%ititu	Polynemus sp.	3	10.34
5		Belodontichthys truncatus	2	6.90
6	ยู๋mun	Hypophthalmichthys molitrix	2	6.90
7	เี้ที่บ	Thynnichthys Thynnoides	1	3.45
8	เที่กุก	Chyclocheilichthys enoplos	1	3.45
9		Wallago attu	1	3.45
10		Oreochromis sp.	1	3.45
11	เี่กถัก	Barbonymus sp.	1	3.45
12		Mastacembelus armatus	1	3.45

Fish species are no longer caught in flooded rice field, Ou Roeung Ov, Tboung Khmom founded 12 fish species. Frequency and percent distribution of the top 5 fish species: 1. Leptobarbus hoeveni was 7 (24.1%), 2. Catlocarpio siamensis was 6 (20.7\%), 3. Mekongina erythrospila was 3 (10.3%), 4. Polynemus sp. was 3 (10.3%), and 5 . Belodontichthys truncates was 2 (6.9%) (Table 42).

Table 43. Fish species are no longer caught in flooded rice field, Chhoeung Prey, Kampong Chham province

No.	Khmer Name	Scientific Name	Frequency	\%
1	ธีําบบ	Thynnichthys Thynnoides	13	20.31
2		Chyclocheilichthys enoplos	7	10.94
3		Cirrhinus microlepsis	6	9.38
4		Wallago attu	5	7.81
5	(1T)	Leptobarbus hoeveni	5	7.81
6	เี่ปก	Tenualosa thibaudeaui	4	6.25
7		Channa micropeltes	4	6.25
8		Catlocarpio siamensis	3	4.69
9		paralaubuca barroni	2	3.13
10	¢ิ\% ${ }^{\text {mion }}$	Barbonymus sp.	2	3.13
11	15\%	Datnioides polota	2	3.13
12		Channa striata	2	3.13
13	¢ึ\|ç	Probarbus sp.	2	3.13
14	ゼถี	Mastacembelus armatus	2	3.13
15	¢ ¢TT	Osteochilas melanpleura	1	1.56
16	เี่นกู	Kryptoplerus sp.	1	1.56
17	¢ู9	Lycothrissa crocodilus	1	1.56
18	¢ีํum	Scomberomorus sinensis	1	1.56
19	เีู๋	Hampala sp.	1	1.56

Fish species are no longer caught in flooded rice field, Chhoeung Prey, Kampong Chham province in flooded rice field, O Roeung Ouv, Tboung Kmum founded 12 fish species. Frequency and percent distribution of the top 5 fish species: 1. Thynnichthys Thynnoides was 1 (20.3%), 2. Chyclocheilichthys enoplos was 7 (10.9%), 3. Cirrhinus microlepsis was 6 (9.4%), 4. Wallago attu was 5 (7.8%), and 5. Leptobarbus hoeveni was 5 (7.8\%) (Table 43).

Table 44. Reasons for no longer caught in term of illegal fishing activities, too many people participating in fishing, dam/dyke development, and others by all individuals

All Respondents	Characteristics	Frequency	$\mathbf{\%}$
Illegal fishing gears	No	30	20.98
	Yes	113	79.02
Too many people participating in fishing	No	78	54.55
	Yes	65	45.45
Dam/dyke development	No	85	59.44
	Yes	58	40.56
Others	Losing fish habitat, Lack of feeds, Water flow changing	24	13.71

Table 44 shows fish species have no longer caught in term of illegal fishing gears was nearly $4 / 5$ (79\%), too many people participating in fishing at 45.4%, and dam/dyke development at 40.5%, and others factors such as losing fish habitat, lack of feeds, water flow changing were at 13.7%.

Table 45. Reasons for no longer caught in term of illegal fishing activities by sites

Site	Illegal fishing	Frequency	\%
Mainstream, Kuk Kampul	No	12	34.29
	Yes	23	65.71
Tributary, Peam Ro	No	5	15.15
	Yes	28	84.85
	No	1	4.76
Flooded rice field, Ou Roeung Ov	Yes	20	95.24
	No	5	25.00
Flooded rice field, Choeung Prey	Yes	15	75.00
	No	7	20.59
	Yes	27	79.41

Across the studied sites, fish species have no longer caught in term of illegal fishing gears found that flooded forest site, Tboung Khmom was the highest percentage at 95.2%, followed by tributary site, Peam Rao was at 84.8%, and mainstream site, Kuk Kampul was the lowest at 65.7% (Table 45).

Table 46. Reasons for no longer caught in term of too many people participating in fishing by sites

Site	Many fisheremn	Frequency	\%
Mainstream, Kuk Kampul	No	21	60.00
	Yes	14	40.00
Tributary, Peam Ro	No	10	30.30
	Yes	23	69.70
Flooded forest, Tboung Khmom	No	11	52.38
	Yes	10	47.62
Flooded rice field, Ou Roeung Ov	No	10	50.00
	Yes	10	50.00
	No	26	76.47
	Yes	8	23.53

Across the studied sites, fish species have no longer caught in term of too many people participating in fishing found that Tributary site, Peam Ro was the highest percentage at 69.7%, followed by flooded rice field site, Ou Roeung Ov was at 50%, and flooded rice field site, Choeung Prey was the lowest at 23.57% (Table 46).

Table 47. Reasons for no longer caught in term of dam/dyke development fishers by sites

Sites	Dam/dyke Development	Frequency	\%
	No	16	45.71
	Yes	19	54.29
Tributary, Peam Ro	No	21	63.64
	Yes	12	36.36
	No	11	52.38
Flooded rice field, O Roeung Ouv	Yes	10	47.62
	Flooded rice field, Choeung Prey	No	10
		10	50.00
	No	27	79.41
	Yes	70.59	

Among the studied sites, fish species have no longer caught in term of dam/dyke development found that mainstream site, Kuk Kampul was the highest percentage at 54.3%, followed by flooded rice field site, Ou Roeung Ov was at 50%, and flooded rice field site, Choeung Prey was the lowest at 20.6% (Table 47).

Table 48. Reasons for no longer caught in term of other factors by sites

Site	Other factors	Frequency	\%
All Respondents	Losing fish habitat, Lack of feed, Water flow changing	24	13.71
Mainstream, Kuk Kampul	Losing fish habitat, Lack of feed, Water flow changing	4	11.43
Tributary, Peam Ro	Losing fish habitat, Lack of feed, Water flow changing	1	2.86
Flooded forest, Tboung Khmom	Losing fish habitat, Lack of feed, Water flow changing	6	17.14
Flooded rice field, Ou Roeung Ov	Losing fish habitat, Lack of feed, Water flow changing	4	11.43
Flooded rice field, Choeung Prey	Losing fish habitat, Lack of feed, Water flow changing	9	25.71

The study founded that other factors such as losing fish habitat, lack of feed, and water flow changing have influenced in losing fish species which resulting in having fish species no longer caught, of which all respondents awswered 13.7%. Among the studied sites, flooded rice field site, Choeung Prey was the highest at 25.7%, followed by flooded forest site, Tboung Khmom was at 17.1% and tributary site, Peam Ro was the lowest amount at only 2.8% (Table 48).

3.9 Species are rare in Catch

Table 49．Fish species are rare in catches by all sites and all individuals．

No	Khmer Name	Scientific Name	Frequency	\％
1		Wallago attu	22	10.28
2	เ゙セึก	Chyclocheilichthys enoplos	15	7.01
3		Cirrhinus microlepsis	12	5.61
4	¢์｜9\％	Probarbus sp．	12	5.61
5	เีฺ๋ิบ	Thynnichthys Thynnoides	11	5.14
6	เที่\％	Kryptoplerus sp．	11	5.14
7	ธี่ากัก	Barbonymus sp．	10	4.67
8	¢゙¢	Mastacembelus armatus	10	4.67
9		Leptobarbus hoeveni	10	4.67
10	\％imum	Chitala ornate	7	3.27
11	ถึnj	Tenualosa thibaudeaui	7	3.27
12	｜it $\square^{\text {¢ }}$	Osteochilas melanpleura	6	2.80
13	¢冖um	Scomberomorus sinensis	6	2.80
14		Catlocarpio siamensis	6	2.80
15	18\％	Datnioides polota	5	2.34
16	｜ix	Pangasius sp．	5	2.34
17		Channa striata	4	1.87
18		Panagasius krempfi	4	1.87
19	ธี่าบบ	Hypophthalmichthys molitrix	4	1.87
20		Hypsitarbus sp．	3	1.40
21	ビกีกnumu	Belodontichthys truncatus	3	1.40
22	$1^{\text {¢ }}$ 䜌	Oxyeleotris	3	1.40
23	［ix	Pangasius conchophilus	3	1.40
24		Mekongina erythrospila	3	1.40
25	¢゙¢	Puntioplites proctozysron	2	0.93
26	ถีตก	Hemibagrus sp．	2	0.93
27		Labiobarbus siamensis	2	0.93
28	เึกตัุ	Akysis sp．	2	0.93
29	｜゙¢	Trichohodus sp．	2	0.93
30	¢ีํา	Hampala sp．	2	0.93
31		Parachela ouygastoides	2	0.93
32	ตีํา	Labeo Chrysophekadion	1	0.47
33		Amblyrhynchichthys micracanthus	1	0.47
34	เึฯฺ์	Pangasius mekongensis	1	0.47
35		Coilia lindmani	1	0.47
36	ยึกํา	Pangasianodon gigas	1	0.47
37	โี่＊กัก	Amblyceps sp．	1	0.47
38	¢ّ¢	Cirrhinus microlepis	1	0.47

39	10nnegig	Pristolepis fasciata	1	0.47
40		Cirrhinus jullieni	1	0.47
41		Cyclocheilichthys sp．	1	0.47
42	เี๋ถู	Notopterus notopterus	1	0.47
43	［ี๋เm	Pangasius larnaudii	1	0.47
44	｜ีึกญณฑ	Osteochilus schlegeli	1	0.47
45		Babichthys laevis	1	0.47
46	คี่บก ก	Wallago micropogon	1	0.47
47	เี¢	Xenentodon cancila	1	0.47
48		Polynemus sp．	1	0.47
49		Hemibagrus filamentus	1	0.47

Fish species are rare in catch by all sites and all individuals founded 49 fish species．Frequency and percent distribution of the top 10 fish species： 1 ．Wallago attu was 22 （ 10.3% ），2．Chyclocheilichthys enoplos was 15 （7\％），3．Cirrhinus microlepsis was 12 （ 5.6% ），4．Probarbus sp．was 12 （5．6\％）， 5. Thynnichthys Thynnoides was $11(5.1 \%)$ ， 6 ．Kryptoplerus sp．was 11 （5．1\％），7．Barbonymus sp．was 10 $(4.7 \%), 8$ ．Mastacembelus armatus was $10(4.7 \%)$ ， 9 ．Leptobarbus hoeveni was 10 （ 4.7% ），and 10．Chitala ornate was $7(3,3 \%)$（Table 49）．

Table 50．Fish species are rare in catches in mainstream，Muk Kampul，Kandal Province

No	Khmer Name	Scientific Name	Frequency	\％
1		Cirrhinus microlepsis	8	16
2	¢ีทบบ	Scomberomorus sinensis	6	12
3		Catlocarpio siamensis	5	10
4	（¢゙¢ ¢	Chyclocheilichthys enoplos	4	8
5		Tenualosa thibaudeaui	4	8
6		Panagasius krempfi	3	6
7	¢ึ！	Leptobarbus hoeveni	3	6
8	ธี่บับก	Barbonymus sp．	2	4
9		Labiobarbus siamensis	2	4
10	เ『ึ	Osteochilas melanpleura	1	2
11		Wallago attu	1	2
12		Belodontichthys truncatus	1	2
13	（\％ix	Labeo Chrysophekadion	1	2
14	1゙\％	Datnioides polota	1	2
15	田界	Channa striata	1	2
16	¢゙TM	Pangasius sp．	1	2
17	เึ｜｜¢ูก	Probarbus sp．	1	2
18	เั๋ก	Pangasianodon gigas	1	2

19		Pristolepis fasciata	1	2
20		Osteochilus schlegeli	1	2
21		Babichthys laevis	1	2
22	（fixm	Xenentodon cancila	1	2

Fish species are rare in catch in catches in mainstream，Muk Kampul，Kandal Province founded 22 fish species．Frequency and percent distribution of the top 5 fish species：1．Cirrhinus microlepsis was 8 (16%) ，2．Scomberomorus sinensis was $6(12 \%)$ ，3．Catlocarpio siamensis was 5 （10\％）， 4. Chyclocheilichthys enoplos was 4 （ 8% ），and 5 ．Tenualosa thibaudeaui was 4 （ 8% ）（Table 50）．

Table 51．Fish species are rare in catches in tributary habitats site，Peam Ro，Prey Veng province

No	Khmer Name	Scientific Name	Frequency	\％
1	¢ี่ ${ }^{\text {min }}$	Barbonymus sp．	6	11.90
2	｜ibx	Chyclocheilichthys enoplos	5	9.52
3		Wallago attu	4	9.52
4	เี่าก	Kryptoplerus sp．	4	7.14
5	¢itm	Chitala ornate	3	4.76
6	เี๋ิท	Thynnichthys Thynnoides	2	4.76
7	ビํา	Hemibagrus sp．	2	4.76
8		Leptobarbus hoeveni	2	2.38
9		Osteochilas melanpleura	1	2.38
10		Cirrhinus microlepsis	1	2.38
11	$)^{\text {¢ }}$	Oxyeleotris	1	2.38
12	10\％	Datnioides polota	1	2.38
13		Pangasius conchophilus	1	2.38
14		Amblyrhynchichthys micracanthus	1	2.38
15	ธ゙¢	Pangasius sp．	1	2.38
16	เึ｜｜c｜	Probarbus sp．	1	2.38
17	（ี์y	Panagasius krempfi	1	2.38
18	ธีทux	Hypophthalmichthys molitrix	1	2.38
19	1゙ทีก	Tenualosa thibaudeaui	1	2.38
20		Notopterus notopterus	1	2.38
21	［ี๋m	Pangasius larnaudii	1	2.38
22		Hemibagrus filamentus	1	100.00

Fish species are rare in catch in tributary habitats site，Peam Ro，Prey Veng province founded 22 fish species．Frequency and percent distribution of the top 5 fish species： 1 ．Barbonymus sp．was $6(11.9 \%), 2$.

Chyclocheilichthys enoplos was 5 （ 9.5% ），3．Wallago attu was 4 （ 9.5% ），4．Kryptoplerus sp．was 4 （ 9.5% ），and 5．Chitala ornate was $3(4.8 \%$ ）（Table 51）．

Table 52．Fish species are rare in catches in flooded forest，Tboung Khmom

No	Khmer Name	Scientific Name	Frequency	\％
1		Wallago attu	7	19.44
2	（immu	Chitala ornate	4	11.11
3	¢゙กี่	Hypsitarbus sp．	3	8.33
4	เ゙｜	Pangasius sp．	3	8.33
5		Mastacembelus armatus	3	8.33
6		Leptobarbus hoeveni	3	8.33
7	เี๋అึ｜	Thynnichthys Thynnoides	2	5.56
8	｜ivic	Osteochilas melanpleura	1	2.78
9		Chyclocheilichthys enoplos	1	2.78
10	けٌّuTin	Puntioplites proctozysron	1	2.78
11		Puntioplites proctozysron	1	2.78
12	ชี่กับก	Barbonymus sp．	1	2.78
13		Channa striata	1	2.78
14	［ip	Pangasius conchophilus	1	2.78
15		Probarbus sp．	1	2.78
16		Amblyceps sp．	1	2.78
17		Mekongina erythrospila	1	2.78
18	ถึําก	Wallago micropogon	1	2.78

Fish species are rare in catch in flooded forest，Tboung Khmom founded 18 fish species．Frequency and percent distribution of the top 5 fish species：1．Wallago attu was 7 （19．4\％），2．Chitala ornate was 4 （11．1\％），3．Hypsitarbus sp．was $4(11.1 \%)$ ，4．Pangasius sp．was $4(11.1 \%)$ ，and 5 ．Mastacembelus armatus was 4（11．1\％）（Table 52）．

Table 53．Fish species are rare in catches in flooded rice field，Ou Roeung Ov，Tboung Khmom province

No	Khmer Name	Scientific Name	Frequency	\％
1		Wallago attu	6	15
2		Mastacembelus armatus	6	15
3	เึ์｜รูก	Probarbus sp．	5	12.5
4	¢ี่	Chyclocheilichthys enoplos	4	10
5		Puntioplites proctozysron	3	7.5
6		Belodontichthys truncatus	2	5
7	ชี่าun	Hypophthalmichthys molitrix	2	5
8		Mekongina erythrospila	2	5

9	（1｜l｜	Leptobarbus hoeveni	2	5
10	เ゙\％	Datnioides polota	1	2.5
11	gix	Pangasius conchophilus	1	2.5
12	ธี¢	Pangasius mekongensis	1	2.5
13		Coilia lindmani	1	2.5
14		Akysis sp．	1	2.5
15		Cirrhinus jullieni	1	2.5
16	¢ituMun	Cyclocheilichthys sp．	1	2.5
17	ゼกําก	Trichohodus sp．	1	2.5

Fish species are rare in catch in catches in flooded rice field，Ou Roeung Ov，Tboung Khmom province founded 17 fish species．Frequency and percent distribution of the top 5 fish species：1．Wallago attu was $6(15 \%)$ ，2．Mastacembelus armatus was $6(15 \%)$ ， 3 ．Probarbus sp．was $5(12.5 \%), 4$ ．Chyclocheilichthys enoplos was $4(10 \%)$ ，and 5 ．Puntioplites proctozysron was 3（7．5（Table 53）．

Table 54．Fish species are rare in catches in flooded rice field，Chhoeung Prey，Kampong Chham province

No	Khmer Name	Scientific Name	Frequency	\％
1	โีติท	Thynnichthys Thynnoides	7	15.22
2		Wallago attu	4	8.70
3		Probarbus sp．	4	8.70
4	｜i์t	Osteochilas melanpleura	3	6.52
5	¢ี｜uTin	Puntioplites proctozysron	3	6.52
6		Cirrhinus microlepsis	3	6.52
7		Oxyeleotris	2	4.35
8	1⁄\％\％	Datnioides polota	2	4.35
9	ゼ¢	Channa striata	2	4.35
10		Tenualosa thibaudeaui	2	4.35
11	¢ีำ	Hampala sp．	2	4.35
12		Parachela ouygastoides	2	4.35
13	เี๋ําก	Chyclocheilichthys enoplos	1	2.17
14	¢ี¢	Puntioplites proctozysron	1	2.17
15		Barbonymus sp．	1	2.17
16		Cirrhinus microlepis	1	2.17
17		Akysis sp．	1	2.17
18	ธี่กบึ	Hypophthalmichthys molitrix	1	2.17
19		Catlocarpio siamensis	1	2.17
20	¢ี้กถญ	Trichohodus sp．	1	2.17
21		Mastacembelus armatus	1	2.17
22		Polynemus sp．	1	2.17

Fish species are rare in catch in flooded rice field, Chhoeung Prey, Kampong Chham province founded 22 fish species Frequency and percent distribution of the top 5 fish species: 1. Thynnichthys Thynnoides was $7(15.2 \%)$, 2. Wallago attu was 4 (8.7%), 3. Probarbus sp. was 4 (8.7%), 4. Osteochilas melanpleura was $3(6.5 \%)$, and 5 . Puntioplites proctozysron was 3 (6.5%) (Table 54).

Table 55. Reasons for rare in catches in term of illegal fishing gears, too many people participating in fishing, dam/dyke development, and others by all individuals

All	Characteristic	Frequency	$\%$
Illegal fishing gears	No	39	26.00
	Yes	111	74.00
Too many people participating in fishing	No	88	58.67
	Yam/dyke development	No	62
Others	90	60.33	
	Yes	60	40.00

Table 55 shows fish species are rare in fish catch in term of illegal fishing gears was 74%, too many people participating in fishing at 41.3%, and dam/dyke development at 40%, and losing fish habitats were 14.3\%.

Table 56. Reasons for rare in catches in term of illegal fishing gears by sites

Sites	Illegal fishing gears	Frequency	$\%$
Mainstream, Kuk Kampul	No	11	32.35
	Yes	23	67.65
Tributary, Peam Ro	No	11	33.33
	Yes	22	66.67
Flooded forest, Tboung Kmum	No	2	9.09
	Yes	20	90.91
Flooded rice field, O Roeung Ouv	No	8	30.77
	Yes	18	69.23
Flooded rice field, Choeung Prey	No	7	20.00
	Yes	28	80.00

Across the studied sites, fish species are rare in catch in term of illegal fishing gears found that flooded forest site, Tboung Khmom was the highest percentage at 90.9%, followed by flooded rice field site, Choeung Prey was at 80%, and tributary site, Peam Ro was the lowest at 66.6% (Table 56).

Table 57. Reasons for rare in catches in term of too many people participating in fishing by sites

Sites	Many fishermen	Frequency	$\%$

Mainstream, Kuk Kampul	No	21	61.76
	Yes	13	38.24
Tributary, Peam Ro	No	12	36.36
	Yes	21	63.64
Flooded forest, Tboung Kmum	No	18	81.82
	Yes	4	18.18
Flooded rice field, O Roeung Ouv	No	15	57.69
	Yes	11	42.31
Flooded rice field, Choeung Prey	No	22	62.86
	Yes	13	37.14

Across the studied sites, fish species are rare in catches in term of too many people participating in fishing found that tributary site, Peam Ro was the highest percentage at 63.6%, followed by flooded rice field site, Ou Roeung Ov was at 42.3%, and flooded forest site, Tboung Khmom was the lowest at 18.2% (Table 57).

Table 58. Reasons for rare in catches in term of dam/dyke development by sites

Sites	dam/dyke development	Frequency	\%
Mainstream, Kuk Kampul	No	16	47.06
	Yes	18	52.94
Tributary, Peam Ro	No	25	75.76
	Yes	8	24.24
Flooded forest, Tboung Khmom	No	14	63.64
	Yes	8	36.36
Flooded rice field, Ou Roeung Ov	No	15	57.69
	Yes	11	42.31
Flooded rice field, Choeung Prey	No	20	57.14
	Yes	15	42.86

Across the studied sites, fish species are rare in catches in term of dam/dyke development found that mainstream site, Kuk Kampul was the highest percentage at 52.9%, followed by flooded rice field site, Choeung Prey and flooded rice field site, Choeung Prey were similar amount at 42.8% and 42.3%, respectively. While tributary site, Peam Ro was the lowest at 24.2% (Table 58).

Table 59. Reasons for rare in catches in term of other factors by sites

Sites	Others	Frequency	$\%$
Mainstream, Kuk Kampul	Losing fish habitat	4	11.43
Tributary, Peam Ro	Losing fish habitat	2	5.71
Flooded forest, Tboung Kmum	Losing fish habitat	8	22.86
Flooded rice field, O Roeung Ouv	Losing fish habitat	2	5.71
Flooded rice field, Choeung Prey	Losing fish habitat	9	25.71

The study founded that losing fish habitats have influenced in losing fish species which resulting in being rare in catches. Among the studied sites, flooded rice field site, Choeung Prey was the highest at 25.7%, followed by flooded forest site, Tboung Khmom was at 22.8%. While tributary site, Peam Ro was and flooded rice field site, O Roeung Ouv were the same amount as low as at 5.7% (Table 59).

3.10 New Species are now caught

Table 60. New fish species are recently caught by all sites and all individuals

No.	Khmer Name	Scientific Name	Frequency	\%
1		Oreochromis sp.	26	34.21
2	ยีทบท	Hypophthalmichthys molitrix	7	9.21
3	เี่งนึกุ	Amblyceps sp.	5	6.58
4	เฺ๋ทบ	Piaractus brachypomus	4	5.26
5	เี゙ロก	Chyclocheilichthys enoplos	3	3.95
6	เี่บที่า	Boesemania microlepis	3	3.95
7		Akysis sp.	3	3.95
8	เีํ	Hampala sp.	3	3.95
9	เี่งิบ	Thynnichthys Thynnoides	2	2.63
10	เีตั่	Hemibagrus sp.	2	2.63
11	เีที่	Gymnosstomus sp.	2	2.63
12		Catlocarpio siamensis	2	2.63
13	ตีคกญ	Trichohodus sp.	2	2.63
14		Mekongina erythrospila	2	2.63
15		Babichthys laevis	2	2.63
16		Wallago attu	1	1.32
17		Puntioplites proctozysron	1	1.32
18	เที่	Pangasius conchophilus	1	1.32
19	เท\|m	Pangasius sp.	1	1.32
20		Probarbus sp.	1	1.32
21		Tenualosa thibaudeaui	1	1.32
22		Notopterus notopterus	1	1.32
23		Polynemus sp.	1	1.32

New fish species are recently caught by all sites and all individuals founded 23 fish species Frequency and percent distribution of the top 10 fish species: 1 . Oreochromis sp. was 26 (34.2%), 2. Hypophthalmichthys molitrix was $7(9.2 \%), 3$. Amblyceps sp. was 5 (6.6%), 4. Piaractus brachypomus was $4(5.3 \%), 5$. Chyclocheilichthys enoplos was $3(3.9 \%), 6$. Boesemania microlepis was $3(3.9 \%), 7$. Akysis sp. was $3(3.9 \%)$, 8 . Hampala sp. was $3(3.9 \%)$, 9 . Thynnichthys Thynnoides was $2(2.6 \%)$, and 10 . Hemibagrus sp. was 2 (2.6\%) (Table 60).

Table 61. New fish species are recently caught in mainstream, Muk Kampul, Kandal Province

No	Khmer Name	Scientific Name	\%
1	ยู่าu\%	Hypophthalmichthys molitrix	27.27
2	เี๋ิบ	Thynnichthys Thynnoides	18.18
3	เิ๋ําญ	Gymnosstomus sp.	18.18
4	เี๋ต	Piaractus brachypomus	18.18
5		Oreochromis sp.	9.09
6		Catlocarpio siamensis	9.09

New fish species are recently caught in Main stream, Muk Kampul, Kandal province founded 6 fish species. Percent distribution of the top 3 fish species: 1. Hypophthalmichthys molitrix was (27.3\%), 2.Thynnichthys Thynnoides was (18.2\%), and 3. Gymnosstomus sp. was (18.2\%) (Table 61).

Table 62. New fish species are recently caught in tributary habitats site, Peam Ro, Prey Veng province

No	Khmer Name	Scientific Name	Frequency	\%
1		Amblyceps sp.	5	25
2		Oreochromis sp.	3	15
3	เี่กตุ\%	Akysis sp.	3	15
4	เีตํา	Hemibagrus sp.	2	10
5	1゙ำ ${ }^{\text {¢ }}$	Hampala sp.	2	10
6	คี่ถุ	Chyclocheilichthys enoplos	1	5
7	[i้\%	Pangasius conchophilus	1	5
8		Probarbus sp.	1	5
9	เีตู\%	Notopterus notopterus	1	5
10		Babichthys laevis	1	5

New fish species are recently caught in Tributary, Peam Ro, Prey Veng province founded 10 fish species Frequency and percent distribution of the top 3 fish species: 1. Amblyceps sp. Was 5 (25\%), 2. Oreochromis sp. was $3(15 \%)$, and 3 . Akysis sp. Was $3(15 \%)$ (Table 62).

Table 63. New fish species are recently caught in flooded forest, Tboung Khmom

No	Khmer Name	Scientific Name	Frequency	\%
1		Oreochromis sp.	9	50.00
2	เฺ๋กบบ	Hypophthalmichthys molitrix	4	22.22
3	ฺัตท	Piaractus brachypomus	2	11.11
4		Wallago attu	1	5.56
5		Puntioplites proctozysron	1	5.56
6		Babichthys laevis	1	5.56

New fish species are recently caught in flooded forest, Tboung Khmom, Tboung Khmom province founded 6 fish species Frequency and percent distribution of the top 3 fish species: 1. Oreochromis sp. was $9(50 \%)$, 2. Hypophthalmichthys molitrix was 4 (22.2\%), and 3. Piaractus brachypomus was 2 (11.1\%) (Table 63).

Table 64. New fish species are recently caught in flooded rice field, Ou Roeung Ov, Tboung Khmom province

No	Khmer Name	Scientific Name	Frequency	\%
1		Oreochromis sp.	9	40.91
2	(1) บท่า	Boesemania microlepis	3	13.64
3		Chyclocheilichthys enoplos	2	9.09
4	ถีคกู่	Trichohodus sp.	2	9.09
5		Mekongina erythrospila	2	9.09
6		Catlocarpio siamensis	1	4.55
7	ใุําก	Tenualosa thibaudeaui	1	4.55
8	เี่ ${ }^{\text {² }}$	Hampala sp.	1	4.55
9		Polynemus sp.	1	4.55

New fish species are recently caught in flooded rice field Ou Roeung Ov, Tboung Khmom founded 9 fish species. Frequency and percent distribution of the top 3 fish species: 1 . Oreochromis sp. was $9(40.9 \%), 2$. Boesemania microlepis was 3 (13.6\%), and 3. Chyclocheilichthys enoplos was 2 (9\%), (Table 64).

Table 65. New fish species are recently caught in flooded rice field, Chhoeung Prey, Kampong Chham province

No	Khmer Name	Scientific Name	Frequency	\%
1		Oreochromis sp.	4	80
2	เึ์\|	Pangasius sp.	1	20

New fish species are recently caught in flooded rice field Ou Roeung Ov, Tboung Khmom founded 2 fish species with frequency and percent distribution of the species: 1 . Oreochromis sp. was $4(80 \%)$, and 2. Pangasius sp. was 1 (20\%) (Table 65).

Table 66. New fish species caught in term of introduction and escape to the wild, and habitat/food preferences, and availability by all individuals

Factors	Frequency	\%
Introduction and escape to the wild		
No		96
Yes	23	19.33
Habitat/food preferences, and availability		
No	96	81.35
Yes	22	18.64
Others		
Increasing aquaculture	27	22.7

Table 66 shows new fish species recently caught in fish catches in term of introduction and escape to the wild was only 19.3%, habitat/food preferences, and availability was also low at 18.6%, and dam/dyke and increasing aquaculture development was at 22.7%.

Table 67. New fish species caught in term of introduction and escape to the wild; and habitat/food preferences, and availability by sites

Sites	Factors	Frequency	\%
	Introduction and escape to the wild		
Mainstream, Kuk Kampul	No	34	97.14
	Yes	1	2.86
Tributary, Peam Ro	No	24	75.00
	Yes	8	25.00
Flooded forest, Tboung Khmom	No	5	71.43
	Yes	2	28.57
Flooded rice field, Ou Roeung Ov	No	4	25.00
	Yes	12	75.00
Flooded rice field, Choeung Prey	No	29	82.86
	Yes	6	17.14
	habitat/food preferences, and availability		
Mainstream, Kuk Kampul	No	32	91.43
	Yes	3	8.57
Tributary, Peam Ro	No	20	64.52
	Yes	11	35.48
Flooded forest, Tboung Khmom	No	6	85.71
	Yes	1	14.29

Flooded rice field, Ou Roeung Ov	No	9	56.25
	Yes	7	43.75
Flooded rice field, Choeung Prey	No	29	82.86
	Yes	6	17.14

Across the studied sites, new fish species recently caught in fish catches in term of introduction and escape to the wild found that flooded rice field site, Ou Roeung Ov was the highest percentage at 75%, followed by flooded forest site, Tboung Khmom was at 28.5%. While mainstream site, Kuk Kampul was the lowest at only $2.8 \% \%$ (Table 67). In term of habitat/food preferences, and availability, the flooded rice field site, O Roeung Ouv was the highest at 43.7%. Followed by tributary site, Peam Ro aws at 35.4\%. While mainstream site, Kuk Kampul was the lowest at only 8.5\%\%

3.11 Raise fish by aquaculture

Table 68. Raising aquaculture by all individuals

Raising Aquaculture	Frequency	$\%$
No	143	91.67
Yes	13	8.33

Less than $1 / 10(8.3 \%)$ of respondents have raised aquaculture among the 5 studied sites (Table 68).
Table 69. Raising aquaculture by sites

Site	Raising Aquaculture	Frequency	\%
Mainstream, Kuk Kampul	No	35	100.0
	Yes	0	0.0
Tributary, Peam Ro	No	28	100.0
	Yes	0	0.0
flooded rice field site, Ou Roeung Ov ,	No	28	90.3
	Yes	3	9.7
Flooded rice field, Ou Roeung Ov	No	25	86.2
	Yes	4	13.8
Flooded rice field, Choeung Prey	No	27	81.8
	Yes	6	18.2

Across the studied sites found only that flooded rice field site, Choeung Prey; flooded rice field site, Ou Roeung Ov; and Tributary site, Peam Ro have raised aquaculture at 18.2%; 13.8%; and 9.7%, respectively (Table 69).

4. Summary of Study Results

Five sites across the whole basin presumably representative habitats were selected for the study. 1) flooded forest habitat, Tonle Bit, Tbaung Khmom province; 2) flooded rice field habitat, Ou Roeang Ov, Tbaung Khmom province; 3) flooded rice field habitat, Cheung Prey, Kampong Cham province;4) Mekong mainstream habitat, Muk Kampul, Kandal province; and 5) Mekong tributary, Peam Ro, Prey Veng province. The total representative sample survey of 175 individuals were randomly selected within the 5 study sites of which 35 individuals were randomly selected in each study site. The survey objective aimed to understand the current status of both wild fisheries and aquaculture including other aquatic animals; and the information on type of common uses fishing gears in each habitat and season were also explored.

The average age of respondents was 42.4 years old with the average of household member's respondents was 5.4 persons/household. The average fishing experience's respondents was 17.6 years. More than half (50.6%) of the respondents was as full-time fishers, while nearly 49% as part-time fishers. Up to 92% of respondents used stationary gillnet as their fishing gear. Followed by hook long line was about one-fourth (24.6%). Nearly all respondents (97.1%) have fishing boats and only 2.8% of fisher has no fishing boats, of which nearly 80% of boats with engine and 20.6% of boats without engine.

The average fish catch per fisher per year of the top 10 fish species caught in last 12 months: 1) Gymnosstomus sp. was $666.5 \mathrm{~kg} /$ year (8.2%), 2) Labiobarbus siamensis was $382.5 \mathrm{~kg} /$ year (4.72%), 3) Channa striata was $314.5 \mathrm{~kg} /$ year (3.9%), 4) Puntioplites proctozysron was $304.87 \mathrm{~kg} / \mathrm{year}(3.8 \%)$, 5) Cirrhinus microlepsis was $288.83 \mathrm{~kg} /$ year (3.6%), 6) Parachela ouygastoides was $278.67 \mathrm{~kg} /$ year (3.4%), 7) Puntius rhombeus was $247.00 \mathrm{~kg} /$ year (3.05%), 8) Hampala sp was $242.38 \mathrm{~kg} /$ year (2.99%), 9) Oryzias sp was $230.33 \mathrm{~kg} /$ year (2.84%), and 10) Notopterus notopterus was $228.97 \mathrm{~kg} /$ year (2.82%).

Other Aquatic Animals (OAAs) caught in last 12 months such as frog, rice field shrimp, crab, and water snake. The average frog catch in last 12 months was $91.8 \mathrm{~kg} /$ person/year for all year round, while an average frog catch in dry season only $1 \mathrm{~kg} /$ person/year. The average shrimp catch in last 12 months was $139.8 \mathrm{~kg} / \mathrm{person} / \mathrm{year}$ for all year round, and the average shrimp catch in flood season 153.4 kg per person/year and was only $5 \mathrm{~kg} /$ person/year in dry season. The average crab catch in last 12 months in dry season was $1451 \mathrm{~kg} /$ person/year; $438.7 \mathrm{~kg} /$ person/year for all year round; and $186.5 \mathrm{~kg} /$ person/year in flood season. The average water snake catch in last 12 months for all year round was $1005.3 \mathrm{~kg} /$ person $/$ year; was $40.8 \mathrm{~kg} /$ person/year in dry season; and $8.8 \mathrm{~kg} /$ person/year in flood season.

Fish species are most recent catch founded 57 fish species. Frequency and percent distribution of the recent catch of the top 10 fish species were of: 1) Gymnosstomus sp. was $72(9.3 \%), 2)$ Puntioplites proctozysron was $68(8.8 \%), 3)$ Akysis sp. was $57(7.4 \%), 4)$ Pangasius sp. was $39(5.1 \%), 5)$ Hemibagrus sp. was 36 (4.7\%), 6) Labeo Chrysophekadion was 34 (4.4\%), 7) Hypsitarbus sp. was 33 (4.3\%), 8) Labiobarbus siamensis was $32(4.2 \%), 9)$ Anabas testudineus was $29(3.8 \%)$, and 10) Osteochilus sp. was $25(3.2 \%)$.

The average fish consumption in wet and dry season found at around $126 \mathrm{~kg} /$ fisher and $116.5 \mathrm{~kg} /$ fisher, respectively. The average fish sold in wet and dry season found at around $1044.9 \mathrm{~kg} /$ fisher and $992.4 \mathrm{~kg} /$ fisher, respectively. The average fish processed in wet and dry season found at about $25.5 \mathrm{~kg} /$ fisher and $34 \mathrm{~kg} /$ fisher, respectively. The average fish given in wet and dry season found at about $271 \mathrm{~kg} /$ fisher and $26.3 \mathrm{~kg} /$ fisher, respectively.

Fisheries trend in the last 5 years in term of fish abundance biomass, more than two-third (89.1\%) of respondents answered fish biomass have decreased and less than 1% answered fish biomass has been no change. Reasons for changing fish biomass trend during last 5 years found that illegal fishing gears were the main factors, accounting for nearly one-fourth (23.3\%). Followed by electric-fishing gear with 21.7%. While fyke net using and losing flooded forest were similar percentages at around 11.6% and 11.2%, respectively.

Fisheries trend in the last 5 years in term of fish length, about 72.5% of respondents answered fish length have decreased and less than 19% said fish biomass has been no change. Reasons for changing fish length trend in last 5 years found that losing natural feeds were the main factors, accounting for at 14.3%. Followed by losing flooded forest and too many fishermen were the same amount with 12.7%. While illegal fishing gears and illegal catching larvae/fingerling were similar percentages at around 9.7% and 9.2%, respectively.

Fish species are no longer caught founded 40 fish species. Frequency and percent distribution of the top 10 fish species of no longer caught fish species: 1) Catlocarpio siamensis was 30 (11.81\%), 2) Leptobarbus hoeveni was $21(8.27 \%), 3)$ Cirrhinus microlepsis was $20(7.87 \%), 4)$ Wallago attu was $18(7.09 \%), 5)$ Tenualosa thibaudeaui was $18(7.09 \%), 6$) Barbonymus sp. was $17(6.69 \%), 7)$ Chyclocheilichthys enoplos was $16(6.3 \%), 8)$ Thynnichthys Thynnoides was $14(5.51 \%), 9)$ Chitala ornate was $11(4.33 \%)$, and 10) Mekongina erythrospila was 11 (4.33%). Reasons for no longer caught in term of illegal fishing activities, too many people participating in fishing, dam/dyke development, and other factors. Fish species have no longer caught in term of illegal fishing gears was nearly $4 / 5$ (79\%), too many people participating in fishing at 45.4%, and dam/dyke development at 40.5%, and others factors such as losing fish habitat, lack of feeds, water flow changing were at 13.7%.

Fish species are rare in catch founded 49 fish species. Frequency and percent distribution of the top 10 species are rare in catch: 1) Wallago attu was $22(10.3 \%)$, 2) Chyclocheilichthys enoplos was $15(7 \%), 3)$ Cirrhinus microlepsis was $12(5.6 \%), 4)$ Probarbus sp. was $12(5.6 \%), 5)$ Thynnichthys Thynnoides was $11(5.1 \%)$, 6) Kryptoplerus sp. was $11(5.1 \%)$, 7) Barbonymus sp. was $10(4.7 \%)$, 8) Mastacembelus armatus was $10(4.7 \%), 9)$ Leptobarbus hoeveni was $10(4.7 \%)$, and 10) Chitala ornate was 7 ($3,3 \%$). Reasons for rare in catches in term of illegal fishing gears, too many people participating in fishing, dam/dyke development, and other factors. Fish species are rare in fish catch in term of illegal fishing gears was 74%, too many people participating in fishing at 41.3%, and dam/dyke development at 40%, and losing fish habitats were 14.3%.

New fish species are recently caught founded 23 fish species Frequency and percent distribution of the top 10 of fish species are recently caught: 1) Oreochromis sp. was 26 (34.2%), 2) Hypophthalmichthys molitrix was 7 (9.2\%), 3) Amblyceps sp. was 5 (6.6%), 4) Piaractus brachypomus was 4 (5.3\%), 5) Chyclocheilichthys enoplos was $3(3.9 \%)$, 6) Boesemania microlepis was $3(3.9 \%)$, 7) Akysis sp. was $3(3.9 \%), 8$) Hampala sp. was $3(3.9 \%), 9)$ Thynnichthys Thynnoides was $2(2.6 \%)$, and 10) Hemibagrus sp. was 2 (2.6\%).

New fish species caught in term of introduction and escape to the wild; habitat/food preferences, and availability; and other factors. Fish species recently caught in fish catch in term of introduction and escape to the wild was only 19.3%; habitat/food preferences, and availability was also low at 18.6%; and dam/dyke and increasing aquaculture development was at 22.7%.

Raising aquaculture was less than $1 / 10(8.3 \%)$ of respondents have raised aquaculture among the 5 studied sites.

5. Annex questionnaire

QUESTIONNAIRE FOR FISHERS

Date:

1. Interviewer: \qquad
2. Address: House\#/Village: \qquad Commune: \qquad
District:
Province \qquad
3. Phone number: \qquad
4. Fisher's name: \qquad
5. Fisher's age: \qquad
6. Fisher household dependents \qquad
7. Fishing experience: \qquad year
8. 8. Full time/ Part-time: $\quad \square$ Full time; \square Part-time.
1. Other fisher's occupations: \qquad
2. List your gears used including boats and motors:

$\#$	Gear type	Length (m)	Height (m)	Mesh- size	Habitat*	Motor	Operating in which month?	Fishing day/month
1								
2								
3								
4								
*: 1: Mainstream; 2: Tributary; 3: Flooded rice field; 4: Flooded forest; 5: Coastal								

11. List your top 10 species caught in last 12 months: For Mainstream and Tributary habitats:

$\#$	Code	Local name (Equip with a color atlas of fish)	\% of total catch (estimated)	Total weight/year (kg)	Which months do you catch the species?
1					
2					
3					
4					
5					
6					
7					
8					
9					

$\#$	Code	Local name (Equip with a color atlas of fish $)$	\% of total catch (estimated) $)$	Total weight/year (kg)	Which months do you catch the species?
10					

12. List your top ten species caught in last 12 months: For Floodplain habitats:

$\#$	Code	Local name (Equip with a color atlas of fish)	\% of total catch (estimated)	Total weight/year (kg)	Which months do you catch the species?
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

13. List your top ten species caught in last 12 months: For Coastal habitats:

$\#$	Code	Local name (Equip with a color atlas of fish)	\% of total catch (estimated)	Total weight/year (kg)	Which months do you catch the species?
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

14. OAAs caught in last 12 months:

OAAs	Weight (kg)	Months caught?
Frogs		
Shrimps		
Crabs		

$\ldots \ldots \ldots \ldots \ldots .$.		
$\ldots \ldots \ldots \ldots \ldots .$.		

15. Most recent catch:.............kg

Species name	Code	Species name	Code	Species name	Code

16. Disposal of catch caught in last 12 months:

$\#$	Disposal of catch	Wet season		Dry season	
		kg	or $\%$	kg	or $\%$
1	consumed				
2	sold				
3	processing				
4	given to relative				
5	other.$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$				

17. Fisheries trend compare to last five years:
\square Increase; \square Decrease; $\quad \square$ No change (in terms of abundance and biomass)
\square Increase; \square Decrease; $\quad \square$ No change (in terms of fish length)
Reasons: \qquad
\qquad
\qquad
18. Which species are no longer caught? Why?

Species name: \qquad
\square Illegal gears

Too many people participating in fishing
Dam/dyke construction
Others: \qquad
\qquad
\qquad
19. Which species are rare in catches? Why?

Species name: \qquad
\square Illegal gears
\square Too many people participating in fishing
\square Dam/dyke construction
Others: \qquad
\qquad
20. Which new species are now caught? Why?

Species name: \qquad
\square Introduction and escape to the wild
\square Habitat/food preference and availability
Others: \qquad
\qquad
\qquad
21. Do you do raise fish by aquaculture? $\quad \square$ Yes \square No

If yes, provide the following information:
What species raised?:
How much do you raise for each species in a year ($\mathrm{kg} /$ species)? : \qquad
Where do you get the starter fish from? \square From wild; $\quad \square$ Supplier.
What habitat type do you raise the fish in?
\square Mainstream; \square Tributary;
\square Flooded rice field; $\quad \square$ Flooded forest; \square Coastal.
22. Is your aquaculture dependent upon the flood season?YesNo
23. Disposal of aquaculture fish caught in last 12 months:

$\#$	Disposal of catch	Wet season		Dry season	
		kg	or $\%$	kg	or $\%$
1	consumed				
2	sold				
3	processing				
4	given to relative				
5	other:..				

Interviewer (Name and signature):
Interviewee (Name and signature):

